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Preface

This volume brings together the contents of the courses given at the doctoral
school on ‘Gravitation: from the Hubble Length to the Planck Length’ which
took place in September 2002 in the beautiful environment of the historic Villa
Mondragone, near Frascati, Italy. The school was sponsored and financed by
SIGRAV (the Italian Society of Relativity and Gravitation), the Italian National
Institute of Nuclear Physics and the University of Rome ‘Tor Vergata’.

The main actor on the stage was gravitation: though the weakest among
the fundamental interactions that drive the universe, it is nevertheless, in various
respects, the most encompassing and pervasive one. As stressed by the title of the
school, one can see that, whenever large concentrations of matter and energy are
involved, gravitation works at all scales, from the microscopic domain (such as
the interior of black holes and at the very birth of the universe, where quantum
effects are crucially relevant as well) up to the huge clusters and superclusters of
galaxies which form the large-scale texture of the present-day cosmos.

Gravity is not just the familiar mutually attractive force, affecting all types
of matter–energy but a peculiar manifestation of spacetime itself. Indeed, as
Einstein has taught us, spacetime is not a rigid arena—a simple ground for the
play of others—but, due to the equivalence of gravitation and inertia, it is a
flexible and dynamic part of the whole machinery. This renders the intimate
behaviour of gravitation not only much more complex than was once thought
but also much more interesting. Theory predicts a whole host of new phenomena,
most of them giving rise to tiny effects save under extreme conditions, and a
challenge for experimentalists. In turn, experiments and observations do as usual
supply insights extending our overall understanding and providing the stimulus to
develop new viewpoints and new theories.

Each chapter covers a particular feature, ranging from refined experimental
techniques in gravitational physics all the way to cosmology and to the ‘quantum
frontier’. The authors have tried to be as clear and as pedagogical as possible,
while, at the same time, bringing the reader to the edge of current research topics.
This renders the volume much more than a simple ‘proceedings book’.

Of course, only a selection of topics could be treated here. Nevertheless,
we hope that these chapters will provide the reader with the flavour of current
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research on spacetime and gravitation and with the feeling of fascination that such
frontier investigations are able to transmit to our human perception.

Eugenio Coccia, Vittorio Gorini and Roberto Peron
9 June 2004
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Chapter 1

Introduction

Roberto Peron and Amedeo Balbi

Almost a century after its development by Albert Einstein, the general theory of
relativity is living in a new golden age. Being a beautiful theory both on the
mathematical side and from the point of view of its clear physical insight, it is a
continuous source of experimental predictions: it turns out that the picture of the
world we get from its equations is tightly bound to what we call ‘reality’.

It is not by chance that most of the greatest minds of scientific thought—
Galilei, Newton, Einstein—found in gravitation the key to unveiling so many
secrets of nature. In fact, Einstein (following a path opened by Gauss and
Riemann) discovered that gravitation is nothing but the behaviour of spacetime
itself. The path of a test particle in a gravitational field is simply geodetic motion
in a curved spacetime; in turn, spacetime is curved by the presence of matter and
energy in it. We can speak, following Wheeler, about geometrodynamics.

It is interesting to note that Einstein started from the desire to extend the
principle of relativity from the class of inertial reference frames but ended up
obtaining so much more. It was a conceptual jump, not a simple evolution. It is
once more amazing to see the number and variety of physical consequences one
may obtain from the relatively simple assumptions upon which general relativity
is based.

The lectures in this book cover a wide spectrum of topics in the field of
gravitational physics. All of them are written by leading scientists: their main
scope is to give the reader a general view of their respective fields of research,
focusing on foundations, state-of-the-art, open problems, either from a theoretical
or an experimental point of view. We find unsolved problems in general relativity
and cosmology: even if we restrict ourselves to solar system science, year after
year the complex dynamics of systems driven by the ‘force’ of gravity is revealed.

From the theoretical point of view, the appearance of general relativity
brought onto the scene new mathematical methods, capable of dealing better
with the geometrical character of this theory. This process had its peak in the
formulation of the singularity theorems by Penrose and Hawking. These theorems
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2 Introduction

helped us to obtain a better understanding of the limits of general relativity as a
physical theory: at some level, there should be a much more refined theory with
quantum effects included in the geometry of spacetime. So, in recent decades,
a number of attempts in this direction have flourished, namely covariant and
canonical quantum gravity and, more recently, string theory and loop quantum
gravity. This is only mentioning the mainstream.

The problem of singularity is directly linked to a description of the birth
and expansion of the universe. This is usually done in the framework of
the Friedmann–Robertson–Walker relativistic models but several reasons have
led to an extension of this—called inflationary cosmology—which adds new
assumptions about spacetime dynamics (i.e. the existence of an inflaton field
coupled to gravity) going beyond standard geometrodynamics.

Considering the dynamics of spacetime on a very large scale introduces
some issues at the border between physics and philosophy: in particular, the
link between local and ‘global’ reference frames could open the way to some
hypothesis on the global distribution and flow of matter–energy. This line of
thought—known as ‘Mach’s principle’—had played a fundamental rôle in the
formulation of general relativity by Einstein. Far from being an isolated question,
it opens the way to a deeper view of the mathematical structure of the theory
and finds its place in studying some peculiar predictions of the theory, like
gravitomagnetism.

The experimental side of gravitation science is as varied as the theoretical
one. First of all, geometrodynamics leads to a number of direct experimental
predictions that show the various ways in which relativistic gravitation could
differ from the Newtonian one. So light is bent, test particles trajectories are
different, clocks near masses behave differently. These features are better handled
in a particular formalism called Parametrized Post-Newtonian (PPN), in which
deviations from Newtonian physics are taken into account using an expansion
of metric and stress–energy tensors around the ‘Newtonian ones’. In this way,
it is possible to describe many different gravity theories, each with its own set of
coefficients. Comparison with the experiment leads to constraints on these values,
excluding sets of theories which are not compatible with observed behaviour. In
fact, there exists a number of ‘alternative theories’, usually obtained by relaxing
some of the hypotheses at the basis of general relativity or introducing new fields
coupled to the metric one. In this respect, the PPN formalism is not representative
of a particular class of physical theories but it is to be seen as a classification
device.

Side by side with the ‘classical tests’, following the physical consequences
of geometrodynamics leads to qualitatively new features of spacetime itself. The
existence of phenomena such as gravitomagnetism and gravitational waves in a
sense completes the characterization of geometrodynamics as a true field theory,
showing the different ways in which spacetime is a main actor in the physical
scene.
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Gravitation in the solar system and beyond 3

A separate p lace must be reserved for the Equivalence Principle. I ts
formulatio n is at the heart o f g eometrodynamics—as Ein stein conceived it—and
co n stitu tes p er h a p s its m a in d istin ctive c h a r acter with r e sp ect to th e o th er th eo r ies
o f g r av itatio n . Th e n eed f o r a field th eo r y in o r d e r to d escr ib e g r av itatio n a l
phenomena was more or less clear bu t the treatment of it in an ‘apparent force
wa y ’ wa s in d eed r evo lu tio n a r y. T h is p o in t h a s b een wid e ly cr iticized ( to g e th er
with general covariance) in a number o f ways but wh at remain s once again sh ows
its power. The importance o f an experimental verificatio n o f this p rincip le with
the g reatest possible accuracy is ev iden t and there is active work today focused
on a number o f laboratory-based o r spaceborne experiments.

Retu rnin g to Newtonian grav itation, could it b e that, even on a local scale,
we fin d something different from what we expected? Some claim th at, o n a
sm all scale, th e ‘grav itational force’ does not scale as 1/ r 2 ; o thers p redict secular
variations of the gravitational constant G . A ll th ese to p ics ar e wo r th testin g
experimentally, each of them a possible source of insight and ideas of valuable
in terest even outside grav itatio n physics.

1.1 Gravitation in the solar system and beyond

The Earth and the so lar system env ironment are perhaps the main places where
grav itational phenomena can be studied. Due to th e relative clo seness of
so lar system objects, their m otion can be tracked with relatively high accuracy,
prov id in g thus a g reat deal of in formatio n about grav itational dynamics. This field
of study has g rown in importance over the years, since improvement in knowledge
about th e ‘grav itational env ironment’ around Earth and th e o th er objects in
th e solar sy stem means improvements in space navigatio n techniques. This is
much more important for space techniques applied to Earth sciences, where th is
knowledge has important applications in remote sensin g o f the ‘Earth sy stem’.

Ch ap ter 2 ‘ Pr o b in g sp acetim e in th e so lar sy stem ’ b y B Ber to tti p r esen ts th e
state-of-the-art methods regardin g measurements in th e solar sy stem by focusing
on three f undamental physical quantities: transit times, angles and frequencies.
Wh ile a lot of other measurements could b e p erformed in th is contex t, th e three
ones g iven here retain their status o f ‘fundamental’; they constitute a framewo rk to
wh ich o th ers techniques must relate to, and a source for continuously improved
ex p e r im e n tal d a ta. Du e to th eir r elative c o n cep tu al sim p licity, th ey a llow u s to
see very clearly th e p rogress achieved. From Lunar Laser Ranging to GAIA to
Cassini, current or forthcoming m issions are extending the accuracy to the point in
wh ich care m ust b e taken of prev iously ignored effects. It is in th at sm all frontier
between known and unknown (modelled and unmodelled) that new science is
done.

The phenomenon of gravitomagnetism—an interaction of gravitational
origin caused by currents of mass–energy—is a peculiar prediction of general
r e lativ ity. Ch a p ter 3 ‘ Fr am e- d r ag g in g an d its m easu r em en t’ b y I Ciu f o lin i
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4 Introduction

contains a d etailed d escrip tio n o f the so lar system and astrophysical implications
of grav itomagnetism. Together with recen t advances in studying these phenomena
using test gyroscopes, test particles, clocks and photons, the most recent results
in measuring Lense–Thirring effect (g ravito magnetic precession caused b y Earth
angular momentum) in LAGEOS and LAGEOS II orbits are p resented. The
Equivalence Princip le lies at the basis o f the general relativ ity th eory, and indeed
its testin g remains fundamental for the experimental confirmatio n o f the th eory.
From th is prin ciple Ein stein d irectly deduced light deflectio n and changing of
clock r ates near a m ass. In chapter 4 ‘The sp ecial relativistic Equivalence
Prin ciple’ by K Nordtvedt an ex tended version of th is prin ciple is introduced,
f u lly ex p lo itin g sp ecial r e lativ ity. I t is sh own th at in th is wa y o n e can p r ed ict
a number o f furth er effects, in cluding geodetic and g ravito magnetic precession.
These effects d o not in clude all the possible consequences of general relativ ity
th eo r y, bu t ar e p r e sen t in all lo cally Lo r e n tz- inva r ian t, co m p lete m e tr ic th eo r ies
of gravity.

Among th e various techniques d eveloped for sp ace measurements, Lunar
Laser Ranging sh in es as one of th e most p recise. It h as th e p articular honour of
having been started in conjunctio n with th e first lunar manned landing, and this
raised its fascin ation. Ch apter 5 ‘Lunar laser ranging; a comprehensive probe
of post-Newtonian grav ity ’ b y K No rdtvedt d escrib es its use for studies of post-
Newtonian effects in the Sun–Earth–Moon sy stem. The order 1/c 2 equations
of motio n reveal effects that h ave n o counterpart in Newtonian dynamics, and
co u ld b e in p r in c ip le d iff er en t a lso with r e sp ect to Ein stein g e n e r a l r elativ ity.
Co sm ological consequences (related to scalar–tenso r theories) may b e tested
too. An alysis of Lunar Laser Ranging data can th erefore improve constraints
on alternative theories o f g ravitation, and its expected improvements will render
th is as u sef u l a to o l as in th e p ast.

1.2 Cosmological issues

The connection b etween the large-scale p roperties o f the Un iverse and the
ex tremely small scales investig ated by fundamental physics b ecomes evident
wh en o n e ex p lo r es th e evo lu tio n o f th e Un iver se in its ear ly stag es. Gr av itatio n a l
in stab ility g ove r n s th e g r owth o f th e c o sm ic str u c tu r e , seed ed b y p r im o r d ial
flu ctu a tio n s in th e sp acetim e m etr ic. Th e e m e rg en ce o f th ese flu c tu atio n s is
directly related to physical processes takin g p lace in th e Universe when the energy
is of th e o rder of th e Planck scale. Ph enomena that are not testable in laboratories
on Earth can then be probed by the imprint they have left on the cosmic evolution.
Ch apter 6 ‘The Early Universe and th e Cosmic Microwave Background’ by
A Balbi, outlines the interplay between fundamental physics and cosmological
observations and describes the revolutionary progress in our understanding of the
physical Universe that has taken place over the past decade. Some of the questions
that are investigated by modern cosmology are: What is the nature of the scalar

Copyright © 2005 IOP Publishing Ltd.



The o th er side: g ravitatio n in the quantum regime 5

field s that g overn inflation? Wh at are the different contribu tions to th e energ y
density of th e Universe? Wh at is th e n ature o f the quantum vacuum, whose energ y
seems to domin ate the cosmic budget today?

1.3 The other side: gravitation in the quantum regime

The standard model d escrib in g the unificatio n o f electromagnetic, weak and
str o n g in ter actio n s in to a sin g le g au g e th eo r y is a b eau tif u l an d , in m a ny r e sp ects,
ve r y su ccessf u l d e scr ip tio n o f r eality. U n f o r tu n a tely, g r av ity d isp lay s a p ecu liar
behaviour with resp ect to th e o th er fundamental forces and cannot be in corporated
in to th e f r a m ewo r k p r ov id ed b y th e stan d a r d m o d e l: f o r ex a m p le, g r av ity is
purely attractive, and it is so weak that it basically plays n o r ôle at the atomic
and sub-atomic level. Fu rthermore, th e effective couplin g o f the grav itational
interaction between point-like particles becomes extremely strong at the Planck
scale EPl ≈ 1019 GeV, resulting in divergences in the quantization of general
relativity. The most promising way of connecting gravity to the other interactions
is prov id ed by string th eory. Chapter 7, ‘Strings, Gravity and Particle Physics’
by A Sagnotti, reviews some of the key aspects of string theory, including
extra-dimensions and branes, with applications to particle physics, black hole
thermodynamics and color-flux strings.

1.4 Gravitation as a universal phenomenon

The contributions to this volume demonstrate how the study of gravitation can be
both interesting and a source of precious information about the ‘machinery’ of our
world. For many years the smallness of the gravitational interaction—compared
to the other ones—permitted only a kinematical study (motion of the Heavens).
More accurate observations and new theories have permitted a deeper insight
into the dynamics of most gravitational systems, opening problems still unsolved
(chaotic dynamics, for example). General relativity added a new, fundamental
piece of information, showing how the fall of an apple is a consequence of the
fundamental properties of spacetime. This, after all, showed how a fundamental
theory can be very simple. We hope such clarity will be achieved by the quantum
theory of gravity, whatever it will be.

The simplicity we believe is a characteristic of a fundamental theory has
its counterpart in the overwhelming complexity of natural phenomena as we see
them. The experimental procedures employed add a further degree of complexity
to our view. In the midst of all this ‘chaos’, we feel easy—even when studying
‘this’ or ‘that’—by staying in touch with something that is everywhere, thereby
confirming the unity of our universe.
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Chapter 2

Probing spacetime in the solar system

Bruno Bertotti
Dipartimento di Fisica Nucleare e Teorica, Università di Pavia,
Pavia

2.1 Introduction

This very selective (in particular in the bibliography) and synthetic exposé on
experimental gravitation [20] in space—somewhat different from the original
presentation—is organized around three physical quantities: transit times,
angles and frequencies. For each of these quantities, this chapter, reviews
the fundamental instrumental concepts, together with the driving errors and a
paradigmatic experiment. Its purpose is to stress and exemplify the importance
of the current and outstanding instrumental improvements for the understanding
of the structure of spacetime: it may be useful for theoreticians who wish
to design new experiments and for experimentalists who may find unforeseen
applications and implications for their techniques. For more details, see [7]. At
the fundamental level, a ‘moral’ is the need to formulate an experiment in an
invariant way: coordinates are only a computational tool, a ladder with which
to climb the geometrical wall [3]. For example, the distinction between the
gravitational and transversal Doppler shifts is coordinate-dependent: to avoid
pitfalls, the full expression (2.8) should be used. The initial planning of the Global
Positioning System by the American military was marred by this confusion and,
as a result, civilian physicists had to intervene to define the correct software [1].

From the instrumental point of view, the recent impressive improvement in
accuracy in measurements of distances, angles and frequencies in the solar system
does not mean that the corresponding errors, as usually expressed in terms of
‘standard deviations’, should be taken as a mantra, without a careful and often
critical analysis. I only mention the fact that, for these three quantities, the
dynamic range in relation to the sought signal is huge: although this hindrance
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8 Probing spacetime in the solar system

depends on the respective time scales and cannot be discussed in general terms,
let it be enough to point out the crude ratio between the observable and the error:

(i) For Lunar Laser Ranging, the error in the distance D is σD = 1 cm =
2.5 × 10−11D.

(ii) In GAIA’s astrometric project, the goal in angular accuracy is 10 µarcsec =
5 × 10−11.

(iii) In Cassini’s Doppler experiments, the observable is the fractional frequency
shift y: σy = 3 × 10−15 = 3 × 10−11yE, where yE = 10−4 corresponds to
the Earth’s orbital speed, the main contribution to y.

The data analysis must dig 10 or 11 orders of magnitude into the record before
being able to deal with the signal at the accuracy determined by the instrumental
errors. Many different contributions, all different in nature, larger than this must
be eliminated or estimated before coming to the gist of the experiment. Very often,
they are not known well enough a priori, and must be determined simultaneously
with the target signal. Among the difficulties which may arise in this process, I
can mention the following ones.

• Under- and over-parametrization: a good physical understanding of the
physics and the relevance of all the contributions other than the main signal is
necessary. Adding unnecessary parameters dilutes the information content.

• Correlations between the target parameter p and another parameter, say
p′: in this case, the experiment only provides, in the (p, p′) plane, a very
elongated error ellipse, which undermines the accuracy in p if p′ is not
known by other means.

• Gaps in the record, especially if they also have time scales in the target
signal, are dangerous. For example, since the Moon is, de facto, laser
tracked preferably between its quarter and full phase, the data distribution
itself is modulated with the lunar synodic phase λs. Since the Equivalence
Principle violating signal has the same signature (equation (2.6)), this results
in a deterioration in the accuracy [17].

• When the signal is constant or varies on a time scale longer than the record,
a red spectrum for the noise of the observable quantity may be serious.
Because of the Wiener–Khinchin theorem, such a spectrum is equivalent to
a correlation in the observables and, hence, to an effectively smaller data
set: more dangerously, it may be evidence of systematic errors (like thermal
drift) and non-stationary behaviour.

Space offers several advantages, including:

• freedom from the Earth’s gravity and the related very strong dynamic
anisotropy;

• small (but not vanishing!) non-gravitational forces;
• very little residual gas; and
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Distance 9

• the space around a spacecraft is optically thin—communication b y
electromagnetic waves is easy.

Th e m ain d isad va n tag e is th e lau n c h c o st, essen tially d u e to th e fact th at th e e scap e
ve lo city

ves c =
√

2 
GM⊕

R⊕
� 11. 2 km  s−1 (2.1)

is much larg er (about th ree times) than the typical exhaust velocity of th e g as, o f
th e o rder of its th ermal speed. With chemical fuel, it is not possible to put a body
in o r b it d ir ectly —m u ltip le stag es an d larg e , ex p e n d a b le f u e l tan k s m u st b e u sed .

2.2 Distance

2.2.1 Fundamentals

Traditionally th e unit o f length—th e centimetre—was defin ed, through
in ter f e r o m e tr ic m easu r em en ts, a s a g ive n m u ltip le o f th e wavelen g th λ0 of a
stable optical sp ectral lin e. Two rods have th e same length if they correspond
to th e same number o f wavelengths. The unit o f time was independent and
prov id ed by a m icrowave resonato r b ased on an atomic sy stem. By transferring
a frequency standard from the microwave to the optical band, it was possible
to measure the frequency c/λ0 and to obtain the velo city of light c ( w ith th e
dimension cm s−1 ). This transfer over a frequency range of about seven o rders o f
m a g n itu d e , h owever, is su b ject to r e leva n t er r o r s; m o r eove r, th e stab ility o f laser s
used in in terferometric techniques is much worse th an th at of atomic frequency
standards. As a consequence, the standard o f length has recently been foregone
an d th e ve lo city o f lig h t c is n ow a co nven tio n a lly fixed q u a n tity. I f c = G = 1
(adopted here), lengths are measured in light seconds and masses are lengths:
m� = 1. 48 km, m⊕ = 0. 44 cm. Note that short-term relativistic effects o n a
Keplerian o rbit are o f o rder m , therefore ≈ 1 km in the solar system and ≈ 1 cm
around th e Earth .

This point of view is quite appropriate to space physics, where rigid rods
cannot be used: absolute distances are obtained from the transit times of short
light or radio pulses, timed with atomic clocks. It is also fully consistent with
general relativity, in which three-dimensional rigid bodies cannot be defined
in general: only the proper time is needed to construct the four-dimensional
manifold (the chronometric point of view; see the illuminating discussion in [19],
especially chapters II and III). Figure 2 .1 sh ows h ow an invariant m easurement
of distance is accomplished. Using several nearby, freely falling objects and the
equation of geodesic deviation, an invariant and operational way to measure the
curvature can be defined [3].

However, in the solar system, the round-trip light-time is available only for
very few bodies: the distances of the other ones are obtained dynamically. In
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Figure 2.1. The chronometric measurement of distance. In the spacetime frame (ct, x), we
have M = (0, x̄), P = (ct1−x̄, 0). In special relativity, the proper length of the hypotenuse
M P is the square root of the difference of the squares of the time-like and the space-like
sides: d2 = (x̄ − ct1)2 − x̄2 = c2 t1t2. This reduces to the elementary expression d = ct1
when the events M and P are simultaneous, so that t1 = t2.

the neighbourhood of the Earth, the orbital period of a gravitationally bound
body determines, by the third Kepler law, the ratio GM⊕/a3: unless the Earth’s
parameter GM⊕ is known, all the semimajor axes a are determined to within a
constant scaling a → a′ = ka. The measurement of a single semimajor axis (e.g.
the Moon’s) fixes the scale and all lengths. Similarly, for bodies orbiting around
the Sun, unless GM� is known, the semimajor axes are determined to within a
change of scale. Range measurements of a single quantity, for instance those
carried out with the Viking spacecraft on Mars for the distance from the Earth,
fix all interplanetary distances. At present, GM⊕ and GM� are known with the
fractional accuracy 2 × 10−9 and 1.2 × 10−11, respectively. Correspondingly, the
Astronomical Unit (AU) has an error of ≈ 6 m. Note also that, in space physics,
the mass M and the gravitational constant G never appear separately.

2.2.2 Techniques

The electromagnetic measurement of distance is, of course, the basis of radar,
an impressive technological development, which was started in Great Britain for
military reasons and played an essential role in the Battle of Britain against the
German airforce in 1940. The first suggestion of using radio signal was put
forward by R A Watson Watt in 1935 and, later, the British Government, in
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particular th rough th e work o f Sir H Tizard, brought it to an operational stage
[8]. At present, the m ilitary use o f r ad ar is still paramount bu t n ew civilian
ap p licatio n s, in p ar ticu lar Synthetic Apertu re Radar, were d eveloped for all-
weather mapping.

However, an optical radar, with a wavelength λ several o rders o f magnitude
smaller achieves a hugely larg er gain (proportional to 1/λ2 ) a n d allows m u ch
shorter pulses and, hence, much more accurate ranging. A Q -switched laser
produces regular trains of very short (even 40 ps) pulses, wh ich are fed into the
focal plane o f a larg e r eflecting telescope and sent to the targ et. On the targ et,
sp ecial optical sy stems—called retroreflectors—send the pulse back in the same
direction from which it comes. An elemen tar y, two - d im en sio n a l r ealizatio n o f
su ch a d ev ice is just two orthogonal m irrors. The same telescope receives the
retu rned pulse and the delay � t = 2 D/c is measured electronically. Several Earth
satellites e q u ip p e d with r e tr o r eflecto r s a r e r o u tin ely tr acked in th e c o n tex t o f sp ace
geodesy (Satellite Laser Ranging, SLR); in particular, the two LAGEOS (LAser
GEOdynamic Satellites) suffer little atmospheric drag and provide a very good
realization of gravitational motion: they have achieved remarkable accuracies
(σD < 0. 5 cm, table 2 .1). These m easuremen ts are also r outinely accomplished
for the Moon (Lunar Laser Ranging, [LLR]) (currently with σD < 2 cm), using
four retroreflectors placed there by the NASA Apollo missions and a Soviet
spacecraft.

The basis of radar measurements is the link budget, relating the emitted (P)
to the received (P ′) power in terms of the wavelength λ, the distance D and the
gains G and G′ of the main transmitter and the mirror on the target, respectively:

P ′ = PG2G′2
(

λ

4π D

)4

. (2.2)

The gain G of a parabolic antenna or reflector depends on the angular position of
the source and is the ratio of the power flux in that direction and the isotropic flux.
On the axis,

G0 = 4π Ae

λ2

where Ae is the effective area, somewhat less than the geometrical area of the
dish. The gain measures the lack of perfect collimation due to diffraction.

A laser tracking telescope is capable of transmitting a laser pulse of very
short duration τt and large energy Pτt. If Nt = Pτt/hν is the number of photons
in a single pulse, with the radar equation we obtain the number of photons Nr
received through the same aperture and detected with a photomultiplier in the
primary focus: Nr decreases very fast with the distance, as 1/D4. The received
pulse has a duration τr greater than τt due to dispersion in the atmosphere and
the superposition of several sub-pulses from different retroreflectors encompassed
by the beam. The accuracy with which the round-trip transit time 2D/c can be
measured results in an accuracy σD for the distance. It is important to note that,

Copyright © 2005 IOP Publishing Ltd.



12 Probing spacetime in the solar system

Table 2.1. The t wo LAGEOS satellites: mean orbital element s, mean secular rat es and
rotation period. For t he latter, we give the i nitial value (roughly 0. 5 s for bot h sat ellites)
and a n e st i m at e of t he r ot a t i on per i od a t t he end of 2001.

LAGEOS 1 L AGEOS 2

L a unch 4 May 1976 22 O c t ober 1992
S e mi maj or a xi s 12 270 km 12 167 km
Revolution period 13 500 s 13 380 s
Rotation period 0. 5/ ≈ 2500 s 0. 5/ ≈ 30 s
E ccent r i c i t y 0. 0039 0. 0133
I ncl i nat i on 109. 80◦ 52. 65◦
Perigee rate −0. 213◦ /d 0. 438◦ /d
N ode r a t e 0. 342◦ /d −0. 632◦ /d

for the Moon, Nr is much less than unity, so that an actual m easurement r equires
averaging over m any successive shots. Moreover, the number Nr has a Po issonian
distribution and a standard deviation

√
Nr : this p laces a f undamental limitation

on the accuracy with which one can measure the arrival time o f the centroid o f the
retu rned pulse.

The assu mptio n o f a straight path is far from correct, due to atmospheric
refraction, which increases the optical path by as much as 2 m , d epending on
atmospheric conditions and the elevation over the horizon. The bulk of this
co r r ectio n is eva lu ated with m e teo r o logical measurements and a model o f the
atmosphere bu t, for a higher accuracy, another h armonic o f the laser line is u sed
simultaneously. Since air is a dispersive medium, there is a difference between the
transit times in the two frequencies, which can be used to obtain the geometrical
distance D.

2.2.3 Lunar Laser Ranging

This section, a complement to Professo r Nortd vedt’s contribu tio n (chapter 5 ),
briefly introduces the outstanding Lunar Laser Ranging (LLR) experimental
programme. This programme is the main and, to some degree, unexpected
scientific result of the expensive and largely forgotten NASA Apollo missions
for the human exploration of the Moon: three retroreflectors were placed there by
the astronauts.

If the ratio Mg/Mi = 1 + η between the inertial and gravitational mass of
the Earth (at r1) and the Moon (at r2 = r1 + r) are not the same, their motion in
an external (the Sun’s) gravitational potential per unit mass U(r1) fulfils

d2r
dt2

+ ME + mM

r3
r = −(η2 − η1)∇U(r1) − r · ∇∇U(r1) + O(r2). (2.3)
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The last but one term is related to the solar tide in the quadrupole approximation:
a violation of the Weak Equivalence Principle (EP) brings in a new solar term, a
relative acceleration, independent of the distance r . To see what its effect is, note
that it corresponds to the potential (per unit mass)

UEP = −H1 = −(η2 − η1)
m�
R3

R · r = −(η2 − η1)n
2� R · r (2.4)

where R is the vector from the Earth to the Sun and n� the mean motion of
the Earth. H1 is the corresponding perturbation in the Hamiltonian function.
Neglecting the eccentricity of both the Moon and the Earth, H1 depends on time
as cos λs = R · r/(Rr) where λs is the synodic longitude of the Moon. The effect
on the distance r is nearly the same as the effect on the osculating semimajor axis
a, governed by the first Lagrange equation

da

a dt
= − 2

na2

∂ H1

∂M
(2.5)

in terms of the mean anomaly M = n(t − t0) and the mean motion n of the Moon
around the Earth. Since M and λs only differ by their origin (the perigee and the
Sun, respectively), this directly integrates to

δr

r
= − 2

n2r2
H1 = 2(η2 − η1)

Rn2�
rn2

cos λs. (2.6)

At an elementary level and when the eccentricity of the Moon is neglected, this
equation is a simple consequence of the energy theorem: the rate of change in the
osculating orbital energy (per unit mass) −mE/(2a) equals the power

(η2 − η1)
m�
R3

R · v
of the new force, from which (2.5) is easily derived.

The much larger force −r · ∇∇U(r1) is due to the solar tides and, since
it corresponds to a potential function quadratic in r , it gives a correction in
the distance r with the period 2λs, easily distinguishable from the Equivalence
Principle signal. An error of 10−10 in δr/r (equation (2.2.3)) corresponds to
an error in η2 − η1 of about 2 × 10−11: after about 30 yr of data and a large
number of lunar months, this test, in effect, has attained the accuracy 5 × 10−13.
From the fundamental point of view, a non-vanishing value for the parameter
η is a complex and overall effect, resulting from all terms which appear in the
mass of a body, in particular its binding energies. While for small bodies, such as
those employed in laboratory tests, the main binding energies are microscopic, for
the solar system bodies we are testing possible differences in the contribution of
the gravitational binding energy—the main one—to the inertial and gravitational
mass. The Lunar Laser Ranging test of the Equivalence Principle, therefore, is
essentially different from laboratory tests. As amply discussed by K Nortdvedt,
LLR is now an outstanding tool, not only for testing gravitational theories but also
for investigating the dynamics and interior of the Moon.
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14 Probing spacetime in the solar system

2.3 Angle

2.3.1 Fundamentals

If two light rays with null vectors p1 and p2 arrive at an event x(s) of an observer
at its proper time s, their angular separation δ is invariantly defined as follows:
construct, for each of them, the projection p⊥ = p − v(p · v) orthogonal to the
four-velocity v = dx/ds; δ is the angle between the space vectors p1⊥ and p2⊥.
This shows that an angle depends on the motion of the (not necessarily inertial)
observer who measures it.

In classical physics, a goniometer is a rigid graduated circle, to which
the directions of distant objects (for instance, sighted through a telescope)
are referred; but even in special relativity, rigorously rigid bodies do not
exist generically and, contrasting with distances and frequencies, there is no
‘fundamental’ absolute goniometer. Indeed, a rigid body requires that the material
properties and the distances of its points be the same at all times; and their world
lines must be parallel, a requirement which can be fulfilled only if it is inertially
at rest. One must make do with actual bodies, with a finite elasticity and estimate
and monitor their lack of rigidity and its effect on the measurement. Note also
that the direction of a light beam at the instrument is affected not only by the
position of the source but also by gravitational effects on the propagation; for this
reason accurate astrometry is inextricably linked with the gravitational deflection.
Since for a generic star in the sky, the photon trajectory is displaced by the Sun
by approximately m�, at 1 AU the deflection ≈ 10−8 = 2 × 10−3′′ must be fully
integrated into GAIA’s analysis; considering its very large data base, a very good
measurement of γ is expected.

2.3.2 Techniques

Measurements of angles has always had a crucial role in traditional astronomy,
beginning with Erathostenes’ estimate of the radius of the Earth [12]. The optical
resolution of the naked eye, ≈ 1′ = 0.3 mrad, has been drastically overcome in
the seventeenth and eighteenth centuries with graduated circles, built by clever
and patient craftsmen, especially in England. J Horrox was able to divide a 3 ft
staff into 10 000 parts, each about 0.1 mm wide. By about 1820, graduated circles
were achieving accuracies better than a second of arc, to be compared with the
daily parallax of the Sun of 16.12′′ [9]. The measurement of the yearly parallax
of 61 Cygni, with a parallax of 0.292′′, was announced by F W Bessel in 1838:
this was a milestone in three-dimensional astronomy and truly made astrophysics
possible. At a distance of 1 pc, the parallax—the angle subtended by 1 AU—is
1′′; inversely, with an accuracy of 10 µas = 10−5′′ parallactic distances up to
105 pc—further than the whole galaxy—will be available.

The main astronomical realization on the ground of angular measurements is
Very Long Baseline Interferometry (VLBI), based upon a ‘rigid’ body—the Earth
itself—which rotates with a ‘constant’ angular velocity ωE. Very schematically,
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Figure 2.2. In VLBI, two radiotelescopes A and B, separated by the baseline L, measure
the phase delay τ = L · n/c for a source in the direction n. In the body-fixed frame,
n = (n · ω̂)ω̂ + n⊥ is the sum of a constant component along the rotation axis and
a part n⊥ which varies sinusoidally with the rotation period. Accordingly, the delay
τ = τ0 + τ1 cos(ωt + φ) is the sum of a constant and a periodic contribution.

two (or more) large radio antennas at the far-away points A and B separated by
a vector L—the baseline—point to a radio source in the direction n. Within
a limited bandwidth and a wavelength � λ, electromagnetic wavefronts are
received at the two stations with a delay τ of the order of L, consisting of a
constant part and a part with the period of a day (figure 2.2). With sophisticated
software, the two trains are correlated and τ (t) is determined. From the delays
corresponding to the two sources, their angular separation can be determined.
A phase error of the order of unity implies an error in the delay στ ≈ λ,
corresponding, with L = 10 000 km and at 30 GHz, to an angular accuracy of
10−9 rad = 0.2 mas. The error is proportional to 1/L: for better performance and
coverage, VLBI antennas in space have been planned and built. In differential
VLBI, the angular separation between two sources is measured, realizing an
accurate goniometer.

Clearly, a VLBI astronomical ‘goniometer’ requires accurate knowledge
of (a) the rotation vector ωE and (b) the effect of the relative motion of the
two tectonic plates on which the stations A and B stand. The latter is, even
conceptually, a delicate task, since it requires establishing a ‘rigidly’ rotating
Cartesian coordinate system � with the origin at the centre of mass of the Earth,
with respect to which the motion of each plate is known. This is usually done by
requiring that, in �, the overall mean tectonic motion vanishes. A large, world-
wide effort has allowed the routine realization of these requirements, resulting in
errors in the rotation rate ωE smaller than 1 mas y−1. The details of this procedure
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16 Probing spacetime in the solar system

Table 2.2. T hree proj ect s of space ast r omet ry: past ( HIP PARCOS ) and f ut ure. T he average
accuracy in angular position f or objects up t o a given visual magnitude are given in the t hird
and fourth columns, the l ast col umn gives limiting visual magnitude.

Number Accuracy Limiting
Mi ssi on L a unch of s t a r s ( i n m as) A t Mag. m agni t ude.

H I P PA R C O S ( E S A ) 1989 1. 2 × 105 1 9 12
S I M ( NA S A ) 2009 ≈ 104 0. 004 13 20
G A I A ( E S A ) 2012 ≈ 109 0. 010 15 20

are complex , h ighly technical and d epe ndent on the r equired accuracy : let it
su ffice to say h ere that VLBI inextricably links th ree d ifferent areas: positional
astronomy o f the radio sources, the rotational motio n o f the Earth and plate
tectonics. VLBI is an important part of space geodesy. Angular reso lu tions of
≈ 10 µas in th e angular separatio n can be achieved.

2.3.3 Space astrometry: GAIA

I n th e m u c h m o r e im p o r tan t o p tical b a n d , d u e to th e a tm o sp h e r ic scin tillatio n n ear
the g round, accurate astrometry needs instruments in sp ace: they have achieved
huge improvements over g round astrometric telescopes. After the milestone
achievements o f the Hipparcos mission of th e European Sp ace Ag ency (ESA),
seve r a l p r o jects a r e b e in g p lan n e d , with th e p u r p o se o f p lo ttin g a m a p o f th e sky
with a very large number of optical astronomical sources and a very high accuracy
(table 2.2). Note also that with a simple homogeneous distribution of sources, an
increase by a factor 10 in angular accuracy implies an increase by a factor 1000
in the number of objects, with a huge increase in complexity and computational
load.

Figure 2 .3 sh ows the optical bench o f GAIA—a follow-up of Hipparcos—
a cornerstone of the ESA. It collects light with two large rectangular mirrors
(ASTRO1 and ASTRO2) ‘fixed’ in the equatorial plane of a spacecraft, spinning
at the angular velocity 60′′ s−1 (a period of 6 h). Their longer size (along the
equator) is d = 1400 cm. A precessional motion allows covering the whole sky.
Their axes are separated by an angle  = 106◦: the sources in their fields of
view are brought onto the same focal plane, mapping angles into distances. As
the spacecraft rotates, a large CCD array detects the motion of all the images
across the plane and their distances [13]. At the end of the mission, all angular
measurements are integrated into a single sky map.

I confine myself to two general remarks, just to give an idea of the
fundamental limits of such an instrument and the integrated character of the
mission. First, the required accuracy of 10 µas = 5 × 10−11 rad places severe
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Figure 2.3. The concept of GAIA’s astrometric optical bench. The photons collected
by the two main rectangular mirrors ASTRO1 and ASTRO2—d = 1400 cm wide and
 = 106◦ apart—are brought onto the beam combiner (by the secondary (SEC) and the
tertiary (TER) mirrors) which, after a reflection on the beam combiner and the mirror M,
sends them onto the focal plane for detection by the CCD array. For simplicity, only rays of
the first beam are given in bold: they are reflected on the secondary SEC1 and the tertiary
TER1 mirrors below ASTRO1. Opposite the main mirrors are the two main components
L1, L2 of the laser metrological system to measure ; the three supporting struts are also
shown. Figure kindly provided by F Mignard.

constraints on the rigidity of the optical bench. At time scales shorter than the
rotation period, the fundamental angle  must be constant to 1 µas, which in
turn, imposes a high thermal stability: an interferometric laser system on board
is needed to provide a measurement of . For longer times, similarly to VLBI,
the rotation frequency is included, together with the angular data, in the set of
parameters to be determined. Second, the diffraction pattern of a point source,
with width λ/d � 100 mas, is 10 000 times larger than the required angular
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18 Probing spacetime in the solar system

accuracy 10 µas. This impressive hindrance is overcome by scanning each source
many times during the mission and relying on the stability and a good knowledge
of its profile. The resulting attainable fraction of λ/d is essentially determined
by the shot noise, i.e. by the total number of photons N received from a single
source; in turn, this sets requirements on the duration of the mission and the width
of the two fields of view.

2.4 Frequency

2.4.1 Fundamentals

An atomic frequency standard is based upon a microscopic quantum system
capable of sharp energy states, which can control a generator of electromagnetic
waves. At a fundamental level, its stability is ensured by the Strong Equivalence
Principle, according to which the ‘constants’ of local physics do not depend upon
time and place. A violation of this principle could show up in a disagreement
between frequency standards of different nature—none has been found so far.

The shift detected as an electromagnetic signal transfers a frequency from
one standard 1 to another 2 at a different place, has a special-relativistic
component

ω2

ω1
=

[
1 − v2

1

1 − v2
2

]1/2
1 − v2 · k̂

1 − v1 · k̂
(2.7)

where k̂ is the propagation unit wavevector. In addition to the ordinary Doppler
effect O(v) (second factor), there is the transversal effect O(v2) (first factor),
present even if the distance between 1 and 2 does not change. There is also
a gravitational shift; e.g. photons detected on the Earth at an altitude h above
the source are redshifted by �ω/ω = hg. In the solar system, with a
gravitational potential per unit mass U , the fractional Doppler shift is of order
�U ≈ m�/r ≈ v2. Note that the distinction between the gravitational shift
and the transversal Doppler effect is not invariant: in a freely falling frame, there
is no gravity acceleration but the velocities of the source and the detector are
different. In interplanetary propagation, where the potential and the kinetic energy
are generally of the same order of magnitude, the two effects are comparable.
The proper way to obtain the frequency shift in the solar system is a single and
exact description, involving the two four-velocities vµ of the transmitter and the
receiver, and the null four-vector kµ of the parallely propagated photon; then

ω1

ω2
= [gµνkµvν ]1

[gµνkµvν ]2
. (2.8)

This expression can be proved on the basis of the definition of null geodesics [18]
and has an obvious physical interpretation: gµνkµvν is proportional to the photon
energy, as measured by an observer with four-velocity vµ.
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At the cost of looking naı̈ve, I wish to remin d that, in relativity, physical tim e
is a lo cal q u a n tity an d g lo b a l c lo ck sy n c h r o n izatio n is, in p r in cip le, im p o ssib le.
There is, however an interestin g case o f approximate synchronizatio n in the
neighbourhood of the Earth. The ge o i d is defined as a surface where the total
grav itational potential (per unit mass)

UT = U − 1
2ω 2E r 2 sin 2 θ (2.9)

is co n stan t. T h e last ter m is th e cen tr if u g a l p o ten tial, a f u n c tio n o f th e d istan ce r
from the centre and the colatitude θ ; U is th e g r av itatio n a l p o ten tial p er u n it m ass
o f th e E ar th , in cluding th e oblateness contribu tio n . For all clocks at rest o n one
su ch su r face ( in th e r o tatin g sy stem ) , th e r e latio n b etween th e p r o p e r tim e s and
the coordinate time t

d s 2 = d t 2(1 − 2UT + · · ·) (2.10)

is th e same; hence, th e g lobal coordinate t is synchronous with th eir p roper times.

2.4.2 Techniques

The electromagnetic Doppler effect in th e radio band has, of course, m any
industrial applications, in p articular to measure fluid velocities. To obtain the
frequency d isplacement ω(t) − ω0 of the r eceived signal s(t) from the main
o scillato r f r e q u e n cy ω0 , a p h ase-lo cked r eceiver is n eed ed . I n th e trad itio n al
version, it is based upon a Vo ltage Co n tro lled O scilla to r (VCO) which, under an
input z(t), p roduces an output r(t) with frequency p roportional to its amplitude.
A closed-loop receiver is obtained when the input z(t) is th e low-frequency p art o f
the b eat signal b etween r(t) and s(t). For a b etter p erformance, especially with
a large dynamic range of th e incomin g frequency, an open loop is used, which
continuously records the electric field o f the in coming wave with a time resolutio n
better than a period and evaluates its instantaneous frequency, referenced to the
standard. In the acquisition phase, when the incoming frequency is not known
well, the oscillator frequency is swept up and down in a limited bandwidth, until
the incoming carrier is found and lock is achieved; then the ‘tracking’ phase
follows [16].

The use of Doppler measurements as a tool for fundamental physics in space
has been made possible by the developments of extremely accurate frequency
standards (figure 2 .4). The main one, which is currently available and operational
for radio astronomy and space, is the hydrogen maser, a microwave cavity tuned
to the hyperfine frequency splitting ν0 = 1, 420, 405, 751.68 Hz of the ground
level of atomic hydrogen due to the spin interaction between the electron and
the nucleus. Better performances are offered by laboratory devices, like the
Superconducting Cavity Stabilized Oscillators (SCSO). Fractional changes are
measured by

y(t) = ω(t) − ω0

ω0

(
ω = 2πν = dφ

dt

)
. (2.11)
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Figure 2.4. Measured Allan deviation σy(τ), as a function of the integration time τ , of
frequency standards based upon hydrogen masers (MS1 and MS2) and cesium oscillators
(CO1 and CO2), relative to the main frequency standard kept at the National Bureau of
Standards (Boulder, USA). Long-term drifts have been fitted out for the hydrogen maser
signals.

To define its accuracy, the averaging time τ must be specified: the relevant
quantity is the running average

yτ (t) = 1

τ

∫ t+τ/2

t−τ/2
dt ′ y(t ′) = φ(t + τ/2) − φ(t − τ/2)

ω0τ
(2.12)

also expressed in terms of the phase φ. The measure of its statistical fluctuations
must take into account the fact that we can only measure frequency changes, not
absolute frequencies: this is accomplished with the Allan variance [2]

σ 2
y (τ ) = 1

2 〈[yτ (t + τ ) − yτ (t)]2〉. (2.13)

Commercial hydrogen masers reach a stability better than a part in 1015 for
averaging times of the order of 1 h: in the laboratory, using different standards,
longer averaging times can be attained (figure 2.4). Of course, a frequency
standard can also be used as a clock, with an accuracy for the measurement of
an interval T equal to σT = Tσy(T ). It should be noted that the accuracy of a
clock depends in an essential way on the length of the measured interval.

The scientific use of Doppler measurements involving microwave links to
interplanetary spacecraft has been made possible by two great technological
advances. First, continuous improvements in NASA’s Deep Space Network
(DSN), which operates several large dish antennas at three locations widely
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Table 2.3. The Deep Space Network frequencies (in MHz) of coherent uplink (↑) and
downlink (↓) carriers and their conversion ratios R (a rational number). Two nearby
downlinks in Ka-band are used in the Cassini mission.

S-band X-band Ka-band

↑ 7175 34 316
↓ 2299 8430 32 034 32 029
R 880/749 3344/749 14/15

spaced in longitude (Goldstone, California; Madrid, Spain; Canberra, Australia);
in particular, at Goldstone the new, advanced DSS25 station is only devoted to
science. Second, higher-frequency bands are being used (see table 2.3): at DSS25
the new Ka band (table 2.3) has been successfully implemented with a very
sophisticated instrumentation. The Cassini spacecraft is the first interplanetary
probe to use this band: the Italian Space Agency has provided on board the
complex high-gain antenna (4 m in diameter) and the frequency transponder. In
the current, two-way configuration, a Doppler measurement uses a stable and very
narrow spectral line controlled on the ground by a frequency standard: this is the
carrier for transmission. On board, a coherent carrier is locked to the arriving
beam and sent back to the ground, where the total frequency shift y(t) (including
both the up- and down-link) is measured as a function of time.

2.4.3 The Cassini conjunction experiment

Cassini is a huge interplanetary probe launched in October 1997, due to arrive at
Saturn in July 2004 for an exploration of the Saturnian system, which will last
4 yr (at least). In normal conditions, Cassini’s frequency stability requirement
for the new Ka link is σy(τ ) = 3 × 10−15 for 1000 < τ < 10 000 s,
including all disturbances, both at the station and the spacecraft, and those due
to the traversed media (the atmosphere, the ionosphere and interplanetary space).
This corresponds to an accuracy in velocity σv = 10−4 cm s−1 and, over
1000 s, an accuracy of 1 mm in the change of distance. For the acceleration
the accuracy is σy(τ )c/τ = 10−7 cm s−2. It is important to note that, contrary
to the radar technique, with this method absolute distances are not accessible.
Nothwithstanding the novelty, after some instrumental problems, in good working
conditions (i.e. in absence of manoeuvres which produce unknown displacements
in the centre of phase of the antenna, and when the weather at the ground station is
only slightly perturbed) Cassini’s system works fairly well and this specification
is often fulfilled.
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Acco r d in g to g en er al r e lativ ity, th e d e flectio n o f e lectr o m a g n e tic wave s b y
th e Su n is twice th e Newto n ian va lu e

δN = 2 
m�
b

= 4 × 10−6 R�
b

. (2.14)

Wr itin g
δ = (1 + γ ) δN (2.15)

th e g eneral relativity valu e corresponds to γ = 1. In both cases, the deflectio n is
inversely p roportional to the impact parameter b of th e b eam, bounded b elow by
th e solar radius R�  . Therefore, this fundamental test can discriminate between a
scalar and a tensor theory of grav ity: a small scalar field, a remnant o f the dilaton
field ϕ of primordial cosmology, may contribu te at th e p resent time. The value of
γ − 1 is an indicatio n o f the mixture b etween a tenso r field o f rank 2 and other
field s wh ich d e ter m in es g r av ity ; sin ce in th e Newto n ian case γ = 0, it is not a
su rprise that in the scalar case γ < 1. Theoreticians have not yet b een able to
construct a clear-cut and computable fundamental th eory for this interaction: in a
sim p le ve r sio n , wh er e ϕ is coupled to matter through a potential V (ϕ), one finds
(see No rdtvedt’s chapter (5) in this volume, formula (5.11)):

γ − 1 = −1

2

(
d ln V (ϕ)

dϕ

)2

. (2.16)

As the Universe expands, ϕ ten d s to th e m in im u m o f V (ϕ)  and γ − 1 b ecomes
small, bu t remains negative. The deficiency may be of order 1 0−5 –10−7 ( [10]
and cited p apers). Measurin g this tiny d iscrepancy, therefore, is o f fundamental
importance for th e understanding of th e n ature o f g ravitation. The same remnant
scalar field produces also a change in the o ther PPN parameter β , a violation of
th e Weak EP and a change in time o f the grav itational constant at th e cosmological
scale.

Tr aditionally, the deflection p arameter γ can be obtained d irectly, b y
comparin g the angular distance between two celestial sources in th e sky with
and without the Sun nearby (as done for the first time during the solar eclipse
of 1919 [11]). However, one can also use the fact th at a d eflected path im plies
th at th e tr a n sit tim e � t b e tween th e e mittin g a n d receiv in g statio n s is larg er
th an th e g eo m e tr ic va lu e a n d ch an g e s with tim e; th is is called th e Shapiro effect.
Both methods have been actively pursued and have confirmed the predictions of
general relativity with an accuracy σγ ≈ 10−3 [15, 20]. But there is a third way,
which relies on the obvious fact that a deflection changes the angle between the
direction of propagation of the photons and the velocities, of order v � 10−4,
of the emitting and receiving stations (details in [5]). A time-dependent Doppler
shift yGR of order vδ  is produced: numerically and, in general, (figure 2 .3),

yGR ≈ 1 + γ

2
8 × 10−10

(
R�
b

)
. (2.17)
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Figure 2.5. T he gr avi t a t i onal s i gnal yGR and t he avai l abl e 18 passages dur i ng C assi ni ’s
cr ui se t o S a t ur n, a s a f unct i on of days f r om s ol ar conj unct i on, w hi c h occur r e d on 21 J une
2002.

Naı̈vely e q u a tin g th is sig n a l to th e Cassin i stab ility r e q u ir e m e n t σy = 3 × 10−15 ,
at grazing incidence, one gets an error σγ ≈ 10−5 .

The m ain h indrance to attain an accura cy of this order and the reason why
th e experiment has not been done earlier is the fact th at th e b eam must traverse
th e solar corona, a dense, unmodellable, unpredictable and fast-varying plasma: it
produces an outward d e flectio n , at a sm a ll im p act p a r a m e ter s even larg er th an th e
g r av itatio n a l e ff ect ( see [ 4 ] , in p a r ticu lar fig u r e 2 .1 ) . I t can b e easily sh own th a t, if
Ne(t) = ∫ 

d s ne is th e total electron p lasma columnar content encountered along
the b eam (up and down) b y a photon emitted at the time t from the ground station,
th e Doppler observable y(t) is affected by a term ∝ d Ne/(ω  2 d t), inversely
proportional to the square of th e carrier’s frequency ω . I recall that n o frequency
measurement is carried out on board; moreover, th e time scale o f the experiment is
comparable with th e round-trip light-time, so th at th e electron columnar contents
( m ain ly lo calized n ear th e Su n ) in th e u p lin k ( Ne↑(t))  and the downlink ( Ne↓(t))
are independent, and generally different. The observable y(t) is, therefore, the
su m o f three contribu tions: the non-disp ersive part ynd(t), which in cludes the
grav itational signal, y↑(t) and y↓(t). In Cassini’s experiment, for the first time,
the elimination of all the plasma contributions has been made possible with the
use o f a multi-frequency link. As indicated in table 2 .2, two carriers, in th e X- and
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Ka-bands, respectively, are transmitted to the spacecraft; the X uplink, besides the
normal X downlink, controls on board also a side channel in the Ka band; with the
complete up and down Ka link we have three independent observables, which can
be conveniently labelled as yXX(t), yXK(t), yKK(t). They are linear combinations
of ynd, the uplink and the downlink plasma contribution. With a simple linear
system the latter ones can be eliminated. What is left, ynd(t), contains not only
the signal yGR(t) but also other contributions, in particular from the troposphere
and the orbital dynamics.

Details of the error budget are given in [14]. A 30-day experiment was
carried out from 6 June to 7 July 2002 and has confirmed that the plasma
compensation system works. In [6], other aspects of the experiment are discussed,
in particular the important role of the dynamical model: the non-gravitational
forces acting on the spacecraft perturb its motion quite appreciably and must be
suitably modelled and determined. At the level 1σ , the result [6]

γ − 1 = (2.1 ± 2.3) × 10−5 (2.18)

does not show any violation of general relativity but with an accuracy greater by
about a factor 50 over previously published experiments.
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Chapter 3

Frame-dragging and its measurement

Ignazio Ciufolini
Dip. Ingegneria dell’Innovazione, Università di Lecce, Via
Monteroni, 73100 Lecce, Italy

3.1 Some historical background on the measurement of
gravitomagnetism and the gravitational field inside a
rotating shell

This is just a brief introduction to past and present experiments to measure
gravitomagnetism and the problem of the gravitational field inside a rotating shell:
for a more exhaustive introduction we refer readers to Ciufolini and Wheeler [1].

In 1915, Einstein published his theory of general relativity. Among the
sources of inspiration was Mach’s idea on the origin of inertia and inertial forces
[1,2]. Mach thought that centrifugal and inertial forces were the result of rotation
and accelerations with respect to the masses in the universe.

Influenced by Mach, several investigators studied the problem of the
gravitational field inside a rotating shell. In a seminal paper of 1918, Thirring
published a solution of the Einstein field equation representing the metric inside
a rotating shell to first order in M/R (mass over shell radius) and to first order in
ω, the angular velocity of shell [3]. In 1966, Brill and Cohen derived the metric
inside a shell with an arbitrary mass and to lowest order in angular velocity [4].
An extension of the Brill–Cohen results to higher orders in ω was then published
in 1985 by Pfister and Braun [5, 6].

Nevertheless, the exact solution representing the spacetime geometry inside
a shell with an arbitrary mass and rotating with an arbitrary angular velocity is
still unknown. An exact solution inside a rotating shell would give us insight into
the role of the ‘Mach principle’ in general relativity.

Indeed, the level at which general relativity satisfies Mach’s idea on the
origin of inertia has been discussed in a large number of books and papers
(see, for example, [1, 2]). However, general relativity satisfies at least a ‘weak
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28 Frame-dragging and its measurement

manifestation’ of Mach’s ideas: the dragging of inertial frames. Indeed, in
Einstein’s gravitational theory, the concept of an inertial frame has only a local
meaning and a local inertial frame is ‘rotationally dragged’ by mass–energy
currents because moving masses influence and change the orientation of the axes
of a local inertial frame, i.e. of the gyroscopes; thus, a current of mass such as the
spinning Earth ‘drags’ and changes the orientation of the gyroscopes with respect
to the distant stars.

It might be surprising to know that the first experiments to detect the
gravitational influence of the rotation of a mass and to measure the dragging of
a gyroscope by a rotating body were performed well before the development of
Einstein’s theory of general relativity [1].

In 1896, Benedikt and Immanuel Friedländer [8] tried to measure the
dragging effect due to a rapidly rotating, heavy fly-wheel on a torsion balance.
Immanuel Friëdlander wrote:

In the same way as centrifugal force is acting on a static wheel due
to the rotation of the heavy earth and the cosmos, there should, I
thought, appear on accordingly smaller scale a centrifugal force action
on bodies near moving heavy fly-wheels. Would this phenomenon be
detectable. . . .

In 1904, August Föppl [9] tried to measure the dragging effect on a gyroscope
due to the rotation of Earth: he reached an accuracy of about 2% of the Earth’s
angular velocity. However, the general relativistic dragging effect on a gyroscope
at the surface of the Earth (at a European or US latitude) is about 2 × 10−10 of its
rotation rate! These experiments, performed before the development of general
relativity, were inspired by Mach’s ideas on inertia.

In 1916, de Sitter [10] calculated the tiny shift in the perihelion of Mercury
due to the rotation of the Sun, a particular case of the shift in the pericentre of
an orbiting test particle due to the angular momentum of the central body, see
section 2. This shift of about −0.002′′/century is about 5 × 10−5 times smaller
than the standard general relativistic Mercury precession of ∼ 43′′/century and is
too small to be measured.

In their well-known 1918 paper, Lense and Thirring [7] calculated the
gravitomagnetic secular perturbations of the moons of various planets. In
particular, the V moon of Jupiter has a considerable gravitomagnetic secular
precession; however, the observations do not yet allow this effect to be separated
out and measured.

In 1959, Yilmaz [11] proposed using polar satellites to detect the
gravitomagnetic field, thus avoiding the effects due to the non-sphericity of the
Earth’s gravity field. In 1976, Van Patten and Everitt [12] proposed measuring the
Lense–Thirring nodal precession using two drag-free, guided satellites, counter-
rotating in the same polar plane. The reason for proposing two counter-
rotating satellites was to avoid the error associated with the determination of the
inclination.
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Between 1959 and 1960 [13, 14], G E Pugh and Leonard Schiff
independently proposed an experiment using orbiting gyroscopes: this became
the well-known Gravity Probe-B experiment, or GP-B (launched on 20 April
2004). The Stanford University group has been working for more than 30 years
to make and fly superconducting gyroscopes in an Earth-orbiting satellite [15].
At an altitude of about 650 km, the axis of a gyroscope is predicted to undergo
a gravitomagnetic frame-dragging of about 42 milliarcsec per year. GP-B should
detect the gravitomagnetism of the Earth and measure it to an accuracy of about
1% or less.

Several other experiments have been proposed for measuring the
gravitomagnetic field; for a review, see Ciufolini and Wheeler [1]. Here we only
mention the Foucault pendulum at the South Pole [16], the ring laser gyroscopes
[17] and the orbiting gradiometers. Between 1980 and 1989, the use of gravity
gradient resonant detectors orbiting the Earth [18] and superconducting gravity
gradiometers in a polar orbit [19] was proposed to measure magnetic components
of the Riemann tensor, with the accuracy needed to detect the gravitomagnetic
field. Some indirect astrophysical evidence of frame-dragging was obtained in
1988 by the periastron precession rate of the binary pulsar PSR 1913 + 16 [20].

In 1984 and 1988, we proposed [21] the detection of the gravitomagnetic
field by measuring the orbital drag on non-polar, passive, laser-ranged satellites.
The fundamental idea [21, 22] of this experiment, called the LAGEOS III
experiment, is based on two considerations:

(a) position measurements of laser–ranged satellites, of the LAGEOS (1976)
type (see later), are accurate enough to detect the very tiny effect due to the
gravitomagnetic field—the Lense–Thirring precession; and

(b) to ‘cancel out’ the enormous perturbations due to the non-sphericity
of Earth’s gravity field, we need a new satellite with an inclination
supplementary to that of LAGEOS, and with the other orbital parameters,
a and e, nearly equal to those of LAGEOS.

The accuracy of this experiment was estimated, by several studies and papers [22],
to be, in 1988, of the order of 10% of the Lense–Thirring effect.

In 1998, the LARES experiment [23] was proposed and selected as a phase-
A study by ASI, the Italian Space Agency. This space mission would allow the
Lense–Thirring effect to be measured at the 1% level and is briefly described in
section 3.5.

Between 1995 and 2001, using two laser-ranged satellites, we measured
[24–27,73] the Lense–Thirring effect several times with an accuracy ranging from
about 50% to about 30%. These are described in section 3.5. Between 1998 and
2001, this method provided a direct measurement of the Earth’s gravitomagnetism
with an accuracy of the order of 30%. Indeed, we also report here the latest
measurement of the Lense–Thirring effect, obtained in 2001 with the LAGEOS
satellites using nearly 8 years of data. This 2001 result fully confirms and
improves our previous measurements of the Earth’s frame-dragging.
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On 20 April 2004, the Gravity Probe-B experiment was launched in order to
try to measure the Earth’s frame-dragging with 1% accuracy or better.

In 2004, accurate measurements of the Earth’s Lense–Thirring effect have
been obtained using the recently released Earth’s gravity field models generated
by the space missions CHAMP and GRACE and only the nodes, of the LAGEOS
satellites by analysing about 10 years of data. The accuracy of this recent
measurement has been less than 20% [73] (see section 3.5.3). From this
experiment we have concluded that the Lense–Thirring effect exists and its
experimental value is within ∼ 20% of that predicted by Einstein’s theory of
general relativity. However, the most recent measurement, in full agreement with
the prediction of general relativity, has an accuracy of only about 5% [75].

3.2 Frame-dragging, the weak-field slow-motion analogy: an
invariant characterization of gravitomagnetism

In the weak-field slow-motion approximation, a formal analogy with
electrodynamics has been developed by using the Einstein field equation and
the geodesic equation. In geometrodynamics [1, 2], in the weak-field slow-
motion approximation for a stationary, localized, mass–energy distribution, the
(0i ) components of the Einstein field equation can be written in the Lorentz gauge:
�h0i ∼= 16πρvi . This is formally analogous to the Maxwell–Ampère equation for
the vector potential of electrodynamics in the Coulomb gauge: �Ai = −4πρev

i .
h has been called the gravitomagnetic potential. The gravitomagnetic field [1,28]
has then been defined as H = ∇ × h. Furthermore, by the geodesic equation for
a test particle of mass m in the weak-field slow-motion limit, one has then:

m
d2x
dt2

∼= m

(
G + dx

dt
× H

)
.

This is formally analogous to the Lorentz force where G ∼= −M/|x|2 x̂ is the
standard Newtonian acceleration and H is the gravitomagnetic field (see [1]).

This is the weak-field slow-motion analogy of the gravitomagnetic field
in geometrodynamics with the magnetic field of electrodynamics. However, a
characterization of gravitomagnetism independent of any approximation has also
been proposed [1, 28] and is described later.

One might then describe gravitomagnetism as all those phenomena
generated by mass–energy currents and, acting as a source on the right-hand side
of the Einstein field equation. However, in the presence of any mass, one can
always observe a mass current in a boosted frame. Therefore, a more rigorous
definition of gravitomagnetism has been proposed.

This characterization of gravitomagnetism is independent of the frame and
the coordinate system used and is based on spacetime curvature invariants built
using the Riemann curvature tensor (see later). It is also independent of any
approximation.
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In electromagnetism, in the frame in which an electric charge is at rest,
we only have a non-zero electric field but no magnetic field. However, if we
consider an observer moving relative to the charge, in this new frame we have a
magnetic field. Similarly, in general relativity, in the frame where a mass is at
rest, the gravitomagnetic potential h is zero. However, if we consider an observer
moving relative to the mass, in the local frame of the observer we have a non-zero
gravitomagnetic potential h.

Therefore, following the method for characterizing curvature singularities
and classifying different spacetimes [30], one should inspect the invariants of the
spacetime. However, in a vacuum, as a consequence of the Einstein field equation,
the Ricci curvature scalar R = Rα

α is identically equal to zero. Another scalar
invariant is the Kretschmann invariant Rαβµν Rαβµν . However, in the case of a
metric characterized by mass and angular momentum, such as the Kerr metric,
the Kretschmann invariant is a function of M/r3 and J/r4, with the leading term
∼ M/r3, therefore, this invariant is different from zero in the presence of a mass
M, whether or not there is any angular momentum.

Let us then again use the formal analogy between electromagnetism and
weak-field general relativity [31]. In electromagnetism, to characterize the
electromagnetic field, one can calculate the scalar invariant − 1

2 Fαβ Fαβ = E2 −
B2, which is analogous to the Kretschmann invariant

Rαβµν Rαβµν ∼
(

M

r3

)2

+ C

(
J

r4

)2

(see later). However, in electrodynamics, one can also construct the scalar
pseudoinvariant 1

4 Fαβ
∗Fαβ = E · B where ∗ is the dual operation: ∗Fαβ =

1
2εαβµν Fµν . We observe that if we have only a charge q , in its rest frame we have
only an electric field, and the invariant Fαβ

∗Fαβ is zero, therefore, even in the
frames where B �= 0 and E �= 0, this invariant will be zero. However, if in the
rest frame, we have a charge q and a magnetic dipole m, in this frame we have, in
general, Fαβ

∗Fαβ �= 0 and this invariant will, of course, be different from zero in
any other frame.

Therefore, to characterize the spacetime geometry and curvature generated
by the mass–energy currents or by the intrinsic angular momentum, J, of a central
body (in [1] it is shown that, in the weak-field limit, the angular momentum
generated by the mass–energy currents plays a role in general relativity analogous
to the magnetic dipole moment generated by a loop of charge current in
electromagnetism), we should look for an analogous spacetime invariant.

This invariant should, therefore, be built out of the dual of the Riemann
tensor ∗ Rαβµν ≡ 1

2εαβσρ Rµν
σρ , ‘squared’ or ‘multiplied’ by Rαβµν . This pseudo

invariant is of the type [1, 28] 1
2εαβσρ Rµν

σρ Rαβµν . Because of the formal analogy
with electromagnetism and since this pseudo invariant, ∗ R · R, is built using the
Levi Civita pseudo-tensor, it should change sign for time reflections (t → −t)
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and, therefore, it should be proportional to J . A list of all the possible spacetime
invariants built out of the Riemann tensor and its dual is given in [30].

The invariant ∗ R · R in general relativity is especially meaningful. In fact,
whereas in classical electrodynamics ∗ F · F characterizes the electromagnetic
field, but not the spacetime geometry ηαβ , in geometrodynamics the invariant
∗ R · R characterizes the gravitational field and, therefore, the spacetime geometry.

Indeed, by calculating ∗ R · R, the result is (for simplicity we just give here
the weak-field lowest-order, result; for the general, exact, expressions of R · R
and ∗ R · R, and related discussions see [1, 28, 29]):

∗ R · R � 288
J M

r7 cos θ + · · · (3.1)

whereas the Kretschmann invariant R · R, for the Kerr metric, is in the weak-field
limit,

R · R � 48

(
M2

r6
− 21

J 2

r8
cos2 θ

)
+ · · · . (3.2)

Since the external gravitational field of a stationary black hole is determined
by its mass M , charge Q and intrinsic angular momentum J and since, for
the Kerr–Newman metric, the invariant ∗ R · R is [29] still proportional to
J , the previous result is quite general in the case of black holes and is
valid, asymptotically, in the weak-field limit for any quasistationary solution.
Furthermore, the previous result, which was obtained in Einstein theory, is
generally valid in any metric theory of gravity (with no prior geometry) not
necessarily described at the post-Newtonian order by the Parametrized Post-
Newtonian (PPN) formalism [1, 28, 29]. This can be seen in two ways. Let us
first write the weak-field, slow-motion expression of an asymptotically flat metric
of a metric theory of gravity in the form:

g00 � − 1 + 2U + higher-order terms

gik � δik(1 + 2U) + higher-order terms

and
g ≡ (g01, g02, g03).

Then, the pseudo invariant ∗ R · R can be easily calculated at the lowest order to
be

∗ R · R � ∇2[∇U · (∇ × g)] + higher-order terms.

In the case of a static distribution of matter and a corresponding static metric, with
g = 0, we then have ∗ R · R = 0. However, for a stationary distribution of matter
and a corresponding stationary metric, with g �= 0, for example with g ∼ J , we
have ∗ R · R �= 0. In the first case, for a static distribution of matter and a static
metric, with a boost with velocity v, we have g ∼ vU ; however, ∗ R · R is, of
course, still zero: ∗ R · R ∼ ∇2[∇U ·(∇×vU)] = 0. A second argument confirms
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the validity of this result in any metric theory of gravity not necessarily described
by the PPN formalism. For a generic source, in any metric theory of gravity (with
no prior geometry), the full expression for the scalar ∗ R · R must be dependent
on some of the intrinsic physical quantities characterizing the source, such as the
total mass–energy of the source, its intrinsic angular momentum, its multipole
mass moments etc. i.e. it must be dependent on some integral of the mass–energy
density, ε, of the mass–energy currents, εui , etc. In particular, since ∗ R · R must
change sign for time reflections, its full expression for a generic source must be
proportional to some odd function of the intrinsic mass–energy currents εui , . . .

(which cannot be eliminated by a change of origin or a Lorentz transformation),
characterizing the system, such as the intrinsic angular momentum of the source.

Therefore, independently from the field equations of a particular metric
theory, the pseudo invariant ∗ R · R may be used to determine the existence and
presence of ‘intrinsic’ gravitomagnetism in that metric theory of gravity. Indeed,
using this invariant ∗ R · R ∼ (J M/r7) cos θ , we can determine whether or not
there is a gravitomagnetic contribution to the spacetime geometry and curvature.
We just need to calculate ∗ R · R; if it is different from zero, we have a mass–
energy current contribution to the spacetime curvature; if it is zero, there is no
mass–energy current contribution. We do not need to concern ourselves with the
local Lorentz transformation or any other frame and coordinate transformations
on a static background, either ∗ R · R is zero, as in the Schwarzschild case, or it is
different from zero, as in the Kerr case. Of course, a spacetime with ∗ R · R �= 0
is qualitatively different from a spacetime with ∗ R · R = 0, whatever the frame
and coordinate transformations.

In conclusion, we may say that gravitomagnetism [1, 28, 29] is that
phenomenon in which the spacetime structure and curvature are determined and
affected not only by mass–energy but also by mass–energy currents relative to
other matter, i.e. mass–energy currents not generable or eliminable with a Lorentz
transformation (for example the intrinsic angular momentum of a body that cannot
be generated or eliminated by a Lorentz transformation). This characterization of
gravitomagnetism is independent of the frame and coordinate system used and is
only based on spacetime curvature invariants.

3.3 Gravitomagnetic phenomena in test gyroscopes, test
particles, clocks and photons

Einstein’s theory of general relativity [1, 2] predicts the occurrence of peculiar
phenomena in the vicinity of a spinning body, caused by its rotation. The period
of a particle orbiting around a spinning body in the same direction as the rotation
of the body, i.e. ‘co-rotating’ with the central object, is longer than the period of
a particle orbiting at the same distance but in the opposite direction i.e. ‘counter-
rotating’ with respect to the spin of the central object. The difference between the
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co-rotating and counter-rotating orbital periods is

�τ = 4π
J

M
. (3.3)

Furthermore, a particle orbiting around a spinning body has its orbital plane
‘dragged’ around the spinning body in the same sense as the rotation of the body.
Small gyroscopes that determine the axes of a local free-falling inertial frame,
where ‘locally’ means that the gravitational field is ‘unobservable’, rotate with
respect to ‘distant stars’ due to the rotation of the body.

Thus, an external current of mass, such as the spinning Earth, ‘drags’ and
changes the orientation of gyroscopes. Indeed, a test gyroscope has a precession
�̇ with respect to ‘an asymptotic inertial frame’, in a weak field with angular
velocity:

�̇ = −1

2
H = [−J + 3(J · x̂)x̂]

|x|3 (3.4)

where J is the angular momentum of the central object and H its gravitomagnetic
field generated by J (see section 3.2). This is the ‘rotational dragging of inertial
frames’ or ‘frame-dragging’ (‘dragging’ as Einstein called it).

The whole orbital plane of a test particle is itself a type of enormous
gyroscope (for motion under a central force) dragged by the gravitomagnetic field.
Indeed, the orbit of a test particle around a central body with angular momentum
J has a secular rate of change in the longitude of the line of the nodes (intersection
between the orbital plane of the test particle and the equatorial plane of the central
object), discovered by Lense–Thirring (1918) [7], in a weak field given by:

�̇
Lense–Thirring = 2 J

[a3(1 − e2)3/2] (3.5)

where a is the semimajor axis of the test particle and e its orbital eccentricity.
The pericentre of an orbiting test particle is also a type of enormous gyroscope
(for motion under a central force ∼ 1/r2). Indeed, the orbit of a test particle has a
secular rate of change in the mean longitude in the orbit L0 (i.e. L0 = n · �t + ω̃,
where n = 2π/P is the satellite’s mean motion, P its orbital period, �t the
interval of time from passage of the satellite through the pericentre, ω̃ = �+ω the
longitude of the pericentre and ω is the argument of the pericentre, i.e. the angle
from the equatorial plane to the pericentre) and of the longitude of the pericentre
˙̃ω, (defining the Runge–Lenz vector):

˙̃ωLense–Thirring = 2J ( Ĵ − 3 cos I l̂)
[a3(1 − e2)3/2] (3.6)

where l̂ is the orbital angular momentum, a unit vector, of the test particle, and I
its orbital inclination (angle between the orbital plane and the equatorial plane of
the central object).
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Between 1995 and 2001, the Lense–Thirring effect was measured with about
30% accuracy using the LAGEOS and LAGEOS II satellites [21, 22, 24–28], see
section 3.5.2.

However, test particles and gyroscopes are not the only objects affected by
the spin of the central object: photons and clocks are also affected. A photon
co-rotating around a spinning body takes less time to return to a ‘fixed point’
(with respect to distant stars) than a photon rotating in the opposite direction.
In the Kerr metric [1] characterized by the mass and angular momentum of
the central object, a fixed point can be determined by constant Boyer–Lindquist
spatial coordinates, i.e. by the constant spatial coordinates of the weak-field slow-
motion metric (see (3.7)). Operationally a fixed point can be realized by a small
telescope always pointing toward the same distant star, always oriented toward the
centre of the spinning body and at the same distance from it by using gradiometers
and rockets attached to the telescope. For example, around the spinning Earth,
the difference between the travel time of two pulses of electromagnetic radiation
counter-propagating in the same circuit would be∮

g0i

g00
dxi ∼ 8π J⊕

r

or ∼ 10−16 [1, 32]. Since light rays are used to synchronize clocks, the
difference in the travel time of co-rotating and counter-rotating photons implies
the impossibility of synchronizing clocks all around a closed path around a
spinning body. The behaviour of light rays, analysed in this chapter, and the
behaviour of clocks around a spinning body are intimately connected. Let
us then briefly analyse the behaviour of clocks around a spinning object. In
several papers, the ‘frame-dragging clock effect’ around a spinning body has
been estimated and space experiments have been proposed to test it [32–36]. We
observe first that to synchronize clocks around a path in a stationary field, we can
use light rays or even very slowly moving clocks, so that the special relativistic
time dilation is a higher-order effect, always at the same distance from the central
spinning body, so that the mass time dilation is equal for both clocks. Thus, when
a clock co-rotating very slowly (using rockets) around a spinning body and at
a constant distance from it returns to its starting point, it finds itself advanced
relative to a clock kept there at ‘rest’ (with respect to ‘distant stars’, see earlier).
Similarly a clock, counter-rotating arbitrarily slowly and at a constant distance
around the spinning body finds itself retarded relative to the clock at rest at its
starting point [1, 32]. For example, when a clock that co-rotates very slowly
around the spinning Earth, at ∼ 6000 km altitude, returns to its starting point, it
finds itself advanced relative to a clock kept there at ‘rest’ (with respect to ‘distant
stars’) by ∮

g0i

g00
dxi ∼ 4π J⊕

r
∼ 5 × 10−17 s

where g0i ∼ 2J⊕/r2 is the Earth’s gravitomagnetic field and J⊕ ∼= 145 cm2 is the
Earth’s angular momentum. Similarly, a clock that counter-rotates very slowly
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around the spinning Earth finds itself retarded relative to a clock kept at ‘rest’
there by the same amount. However, a larger clock effect, of the order of 10−7,
has been estimated in [33, 34]. Let us explain this apparent disagreement. The
orbital period of a particle or clock freely co-orbiting (along a geodesic) around a
spinning body is longer than the orbital period of a particle or clock freely counter-
orbiting on the same path [33, 34], see formula (3.7). The difference between the
two orbital periods, i.e. the difference between the two times read by a clock at
a fixed point (with respect to ‘distant stars’, see earlier) when the two counter-
rotating particles come back to this point after one revolution is ∼ 4π J/M , i.e.
around the spinning Earth, is ∼ 1.4 × 10−7 s [33–36]: this is basically the effect
derived in [33,34]. Nevertheless, the difference between the time read by the two
clocks when they meet again after a whole revolution is still ∼ 10−16 [32,35,36].

In Einstein’s theory of general relativity, all these phenomena in test
particles, gyroscopes, photons and clocks are the result of the rotation of the
central mass.

3.4 Time delay due to the spin of a central body and inside a
rotating shell

3.4.1 Spin time delay and gravitational lensing

Let us now study null geodesics around a rotating body; in particular, we apply
our results to the behaviour of photons. Null geodesics in the Kerr metric,
also in regard to gravitational lensing and the image’s position, polarization
and intensification, distortion and optical caustic, have been studied in several
papers (see [37–39] and references therein; for gravitational lensing in a strong
Schwarzschild field see [40]). However, here we derive the time delay in
the arrival time of photons due to the angular momentum of the deflecting
body. Using the weak-gravitational-field slow-motion approximation, we also
derive and compare the light deflections caused by the angular momentum and
quadrupole moment of the deflecting body.

By assuming a weak gravitational field and slow motion for the source,
we can write the spacetime metric at the order beyond Newtonian theory,
the post-Newtonian order, in terms of small classical potentials determined by
the distribution and motion of the mass–energy via the solution of Poisson-
like equations, obtained from the weak-field slow-motion limit of the Einstein
equation. If the source is stationary, with mass density ρ and mass–current density
ρvi , in order to study null geodesics, we thus have the following metric [1, 47]:

g00 = −1 + 2U
g0i = −4Vi

gik = (1 + 2U)δik

(3.7)

where δik is the standard Kronecker delta and, by the Einstein equation, in the
weak-field slow-motion approximation the classical potentials U and Vi satisfy
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the Poisson equations: �U = −4πρ  and � Vi = −4πρvi . Vi , or − 4 Vi ≡ g 0 i , is
th e g r av ito m a g n e tic p o ten tial. As u su a l, th e Newto n ian p o ten tial U for a central
d istr ibu tio n o f th e m a ss can b e wr itten a s a m u ltip o le ex p a n sio n ; i.e. if we o n ly
in clude th e monopole, M , and the quadrupole contributions

U = M

r
+ 1

2 
Q i j

xi x j
r 5

wh ere Qij  = ∫
(3 x ′

i x
′
j − r ′2δi j )ρ(x′)d 3 x ′ is the standard quadrupole moment

tensor.
Fo r a n e q u ilib r iu m ellip so id [ 4 1 , 4 2 ] , b y a ssu m in g th e o u ter su r face to b e

equipotential, in spherical coordinates we h ave

U = M

r

[
1 − J2

(
R

r

)2

P20(cos θ)

]

wh ere R is th e e q u a to r ial r a d iu s o f th e e llip so id an d P20 = 1
2 (3 cos2 θ − 1)

is th e a sso ciated Leg e n d r e f u n c tio n . At th e lowest o r d er in th e flatten in g
f ≡ ( R − Rp)/  R , where  R p is the polar radius of the ellipso id, the quadrupole
coefficient, J2 , is  J2 = 2

3 f + O( f 2). If ρ = constant, the quadrupole coefficient
is J2 = 2

5 f + O( f 2).
Th e g r av ito m a g n e tic p o ten tial g0 i , i.e. the non-diagonal p art o f the metric

tensor, from � Vi = −4πρvi , can b e wr itten a s

g0 i(X) ∼= − 4
∫

ρ(x′)v  i (x′)
|X − x′| d 3 x ′ (3.8)

wh ere X is th e p o sitio n vecto r. Far f r o m a statio n a r y so u r ce f o r a sp h e r o id al
rotating body with angular momentum J , we  then have

g(X) ∼= − 2 J × X
|X| 3 

(3.9)

and, wh en J = (0, 0, J ), in spherical coordinates:

g0φ
∼= − 

2 J

r
sin2 θ. (3.10)

Let us derive the time delay and deflection in the electromagnetic waves
due to the spin and quadrupole moment of the central body. The quasi-Cartesian
coordinate system (x, y, z) is the standard isotropic PPN system such that the
coordinate z goes through the observer at Earth, while (X, Y, Z) is a coordinate
system attached to the deflecting body. To relate the coordinate systems (x, y, z)
and ( X, Y, Z), we u se th e Euler angles (φ, β, γ )  ( see fig u r e 3 .1 ) . Fo r sim p licity,
we assume the deflecting body to be axially symmetric and Z , by definition, is
the symmetry axis of the body. In such a case, the shape of the body is invariant
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Figure 3.1. Euler’s angles in our notation. β is the angle between the Z-axis of the body
and the z-axis through the observer. γ is the angle between the line of nodes and the x-axis
on the lens plane, and φ is the angle between the line of the nodes and the X-axis of the
body. The origin of the coordinate systems is placed at the deflecting body.

for rotations of φ and we can thus choose φ = 0. The rotation from (X, Y, Z) to
(x, y, z) is

 X
Y
Z


 =


 cos γ − sin γ 0

cos β sin γ cos β cos γ − sin β

sin β sin γ sin β cos γ cos β





 x

y
z


 . (3.11)

We apply transformation (3.11) to the post-Newtonian metric (3.7) and, in
the new coordinate system (x, y, z), we get

ds2 = g00 dt2 + gi j dxi dx j

+ 4J

r3
(y cos β − z cos γ sin β) dx dt

− 4J

r3
(x cos β − z sin β sin γ ) dy dt

+ 4J

r3 (x cos γ sin β − y sin β sin γ ) dz dt (3.12)
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wh ere
ḡ00 = (− 1 + 2 Ū)

ḡi j  = (1 + 2 Ū)δ  i j ,
(3.13)

and

Ū = M

r

[
1 − J2

(
R

r

)2

P20

(
z cos β + y cos γ sin β + x sin β sin γ

r

)]
.

(3.14)
We can now easily derive th e tim e d elay usin g this m etric element (3.12). In

g e n e r a l, in a str o n g g r av itatio n a l field , th e tim e d elay s d u e to th e g r av ito m a g n e tic
field and to the non-sphericity of th e matter d istributio n are nonlin early coupled.
Howeve r, in th e weak - field slow- m o tio n lim it, i.e. J/ Mr � 1 and  M/ r � 1,
at the post-Newtonian order, we can analyse the two eff ects separately i.e. the
grav ito magnetic and quadrupole moment time d elays.

We have chosen the quasi-Cartesian coordinates such that the emitting and
deflectin g bodies have th e same x and y coordinates (see figure 3.2) but a
different z coordinate; i.e. the source, lens and observer are aligned. We have
chosen this particularly simple configuration since here we are only interested
in studying the time delay due to the gravitational field of the deflecting body
(mass, quadrupole moment and gravitomagnetic time delay). However, there is
an additional time delay, called the geometric time delay [43, page 143], due to the
different geometrical path followed by different rays. Depending on the geometry
of the system, this additional term can be very large and can be the main source
of the time delay. However, when we compare the time delay of photons that
follow the same geometrical path, we can neglect the geometric time delay, as
in the case of two light rays with the same impact parameter but on different
sides of the deflecting object. For of a small deflection angle with respect to
the coordinate line y = b sin α = constant and x = b cos α = constant (see
figure 3.2), the contribution to the travel time delay from the different path length
due to the small deflection is of the order of ∼ Ū2 [1] (to a small deflection angle
of a photon path of the order of δφ � 4M/r corresponds a change in the total
distance l travelled by the photon of the order of δl � l(4M/r )2 and, depending
on the geometrical configuration considered, this delay may need to be included
in the total time delay. In a following paper, we shall analyse the higher-order
time delays and compare then with the gravitomagnetic time delay. Here, for
simplicity, we neglect any geometrical time delay. Now, as the speed of light
equal to c in a local inertial frame: ηαβ dxα dxβ = 0, we have, in a general
coordinate system, ds2 = gαβ dxα dxβ = 0. From this well-known condition of
null arc length along the world line of photons, we then have

g00 dt2 ∼= −g33 dz2 (3.15)

or
dz

dt
∼= ±

√
− g00

g33
(3.16)
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Figure 3.2. The observer, source and deflecting body have the same x and y coordinates:
the source is at z = −z1 (z1 > 0), the observer at z = z2 (z2 > 0) and the deflecting
body at the origin of the coordinate system. b is the impact parameter and α is the angular
position of a light ray on the lens plane. The source is very far from the deflecting body, so
that we assume all the light rays from the source parallel to the optical axis.

thus, from (3.16), we get, to first order in Ū ,

dt =
√

1 + 2Ū

1 − 2Ū
dz ∼= (1 + 2Ū) dz. (3.17)

Integrating this expression from z = −z1 to z = z2 corresponding,
respectively, to the position of the source and observer, if z = z1 � z2 is much
larger than the impact parameter b, we finally get

�tJ2 = 2z̄ + 4M ln

(
2

z̄

b

)
+ 2M R2 J2 cos 2(α + γ ) sin β2

b2
. (3.18)

In this expression the first term is the time taken for a radio pulse to travel
from the source to Earth in the absence of a central mass: M = 0. The second
term is the Shapiro time delay and the third one is the additional delay due to the
quadrupole moment, J2, of the deflecting body.
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Similarly, in regard to the time delay due to the angular moment J of the
deflecting body, from the condition ds2 = 0 and from x = constant, y = constant,
solving (3.12) with respect to dt , we have

dt = − ḡ0z

ḡ00
dz ±

√
ḡ2

0z dz2 − ḡ00ḡzz dz2

ḡ00
(3.19)

where ḡ0z = (4J/r3)(x cos γ sin β − y sin β sin γ ). In the weak-field slow-
motion approximation at the lowest order in Ū and ḡ0z expression (3.19), becomes

dt � ḡ0z dz ± (1 + 2Ū) dz. (3.20)

The first term in (3.20) is the gravitomagnetic time delay, while the other
terms have already been evaluated in the previous case (3.18): they are just the
time it takes for a photon to travel from the source to the observer and the Shapiro
time delay by a mass. Thus, let us integrate the first term of (3.20) from z = −z1
to z = z2 and assume that z = z1 � z2 � b. By setting, as before, y = constant
and x = constant, we get the gravitomagnetic time delay:

�tJ = lim
z̄b→∞

∫ z2

−z1

4J

r3 (x cos γ sin β − y sin β sin γ ) dz

= 4J cos(α + γ ) sin β

b
. (3.21)

From (3.18) and (3.21), we see that �tJ2 (the time delay due to the
quadrupole moment) is of order ∼ 1/b2 whereas �tJ (the time delay due to
the gravitomagnetic field) is of order ∼ 1/b. This shows that there is a value of
the impact parameter b such that �tJ > �tJ2 and, if the angular momentum of
the deflecting body is large enough, the ‘spin time delay’ may be a relevant effect.

To derive the deflection of electromagnetic waves due to the spin and
quadrupole moment of the deflecting body, we use the geodesic equation in
the weak-field approximation, we then have the deflection angles due to the
quadrupole moment J2 and the deflection angles due to the angular momentum
J [32]:

δ
J2
x = −4M cos α

b
− 4J2M R2 sin2 β cos(3α + 2γ )

b3

δ
J2
y = −4M sin α

b
− 4J2M R2 sin2 β sin(3α + 2γ )

b3

(3.22)

δ J
x = −4J sin β cos(2α + γ )

b2

δ J
y = −4J sin β sin(2α + γ )

b2
.

(3.23)
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The first term in (3.22) is the standard deflection by a spherical object of mass
M , whereas the second term is the additional deflection due to the quadrupole
moment, J2, of the central body.

Let us now study the possibility of determining the angular momentum J
of the central deflecting body from time delay and deflection angle of different
images of the source.

Let us consider three light rays emitted from a very far source, propagating
parallel to the z-axis and with the same impact parameter b and let us assume
that we are able to measure, determine or obtain [43] the following quantities:
total time delay between the three rays, �t12 and �t13; deflection angles δ1, δ2,
δ3; and the equatorial radius R of the deflecting body and distances from source
and lens to the observer. In this way, we are able to determine the angle α for
each light beam and the impact parameter b and we can write a system in which
the only unknown quantities are: angular momentum, J , quadrupole moment, J2,
mass, M and Euler’s angle β and γ . Solving this system we can, in principle,
determine the time delay due to the angular moment J and the other unknown
quantities [32].

We have chosen a special case in which x = y = 0 for the source, lens and
observer and all the light rays have the same impact parameter. In this way, as we
have already remarked, we do not need to consider the relative time delays in the
arrival time due to the different geometry of the paths travelled by the photons [43]
and due to the difference in the Shapiro time delays by the central mass: these
delays are, in general, much larger than the spin and quadrupole moment time
delays. Indeed, for other configurations in which the source is not exactly aligned
with the lens and the observer, these effects—the different geometry of the path
travelled and the difference in the standard Shapiro time delay—can be the main
source of relative time delay. In these cases, we would then need to model and
remove these delays between the different images on the basis of the geometry
of the system [32]. In special cases, for example if we were to observe four
images of the source and if the angle α of each deflected ray were to differ by
π—the Einstein Cross has a configuration very similar to this—we could, at least
in principle, eliminate the time delay due to the quadrupole moment (see [32])
and, thus, determine the spin time delay.

3.4.2 Some astrophysical sources and spin time delay

Let us now calculate the time delay due to the spin of some astrophysical sources:
the Sun, the lensing galaxy of the Einstein Cross, Q2237 + 031; and a typical
cluster of galaxies.

The Sun parameters are: M� = 1.477 km, R� = 6.96 × 105 km,
J2� ∼= 1.7 × 10−7 [1] and a� = J�/M� ∼= 0.273 km. Let us consider a co-
rotating photon ( 1

2π ≥ α ≥ − 1
2π) and a counter-rotating one ( 1

2π ≤ α ≤ 3
2π),

both coming from infinity and propagating near the Sun with an impact parameter
b nearly equal to the Sun equatorial radius b ∼= R = 6.96 × 105 km. Let us
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assume, for simplicity, that γ = 0 and β = 1
2π : the maximum gravitomagnetic

and quadrupole moment time delays, according to (3.18) and (3.21), are then,
respectively,

�t J
12 = 8J

b
= 1.54 × 10−11 s (3.24)

�t J2
12 = 4

J2M R2

b2 = 3.35 × 10−12 s. (3.25)

The time delay due to the Sun’s spin could then, in principle, be detected
using a laser interferometer around the Sun: this would consist of a source and a
detector on opposite sides of the Sun, both at a distance of about 8 × 1010 km.
The source, a laser, would, at the same time, emit photons toward the Sun
but with slightly different angles so that they would travel on opposite sides of
the Sun (i.e. photons co-rotating and counter-rotating with respect to the Sun’s
spin). Then, by gravitational lensing, they would be focused and observed by the
detector on the opposite side. Thus, according to the previous calculation, there
would be a relative time delay in the arrival time of the photons due to the Sun’s
spin. Of course all the other travel time delays should be modelled and removed
from the observed delays, in particular the time delay due to the dispersion of
electromagnetic waves by the solar plasma.

To derive the time delay due to the lensing galaxy of the Einstein Cross
[44, 45], we assume a simple model for rotation and shape of the central object.
Details about this model can be found in [46].

The angular separation between the four images is about 0.9′′, corresponding
to a radius of closest approach of about R � 650h−1

75 pc, and the mass inside a

shell with R � 650h−1
75 pc is ∼1.4 × 1010h−1

75 M� [45]. Let us assume J2 � 0.1

and J � 1023 km2 h−2
75 , we then have

�t J
12 = 8J

b
� 4 min (3.26)

�t J2
12 = 4

J2M R2

b2 � 8 h. (3.27)

Thus, at least in principle, one could measure the time delay due to the spin
of the lensing galaxy by removing the large quadrupole moment time delay using
the previously described method [32]: of course one should be able to model all
other delays due to other physical effects accurately enough and remove them
from the observed time delays between the four images.

As a third example, we consider the relative time delay of photons due
to the spin of a typical cluster of galaxies: the precise calculations are shown
elsewhere, nevertheless we give here some results. We consider a cluster of
galaxies of mass MC ∼= 1014M�, radius RC ∼= 5 Mpc and angular velocity
ωC ∼= 10−18s−1. Depending on the geometry of the system and on the path
followed by the photons, we then find relative time delays ranging from a few
minutes to several days [32].
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3.4.3 Spacetime geometry inside a rotating shell

Let us first assume that if a body or shell has a steady rotation, the spacetime is
stationary (a spacetime is called stationary if it admits a time-like Killing vector
field ξα

t , then there exists some coordinate system in which ξα
t can be written as

ξα
t = (1, 0, 0, 0), from the Killing equation, in this coordinate system, the metric

is thus time independent: gαβ,0 = 0). An external solution of this type is the
stationary Kerr metric, characterized by the mass and angular momentum of the
central body. The well-known Lense–Thirring metric [1,7] is, in Boyer–Lindquist
coordinates, the weak-field slow-motion limit of the Kerr metric. The Brill–
Cohen (1966) solution [4] describes the metric inside a shell with arbitrary mass
and to lowest-order in the angular velocity. It is a lowest order series expansion in
the angular velocity ω of the shell on the Scharzschild background of a spherical
mass shell of arbitrary mass M , valid both inside and outside the shell. The Brill–
Cohen metric is

ds2 = −H (r) dt2 + J (r)[dr2 + r2 dθ2 + r2 sin2 θ(dφ − ω(r) dt)2] (3.28)

where

H (r) = [(r − α)/(r + α)]2 for r > R

H (r) = [(R − α)/(R + α)]2 for r ≤ R

J (r) = (1 + α/r)4 for r > R

J (r) = (1 + α/R)4 for r ≤ R

and where α = 2M , and R, ω, and M are, respectively, the radius, angular
velocity and mass of the shell (for further details on this solution, see [6] and
related papers in [48]).

However, in the following, we shall only consider Thirring’s weak-field
slow-motion solution for the metric inside a rotating shell and, for simplicity, we
neglect the stresses of the rotating shell (see [4,48,49] for related discussions and
references). Inside a hollow, static, spherically symmetric distribution of matter,
in vacuum, we have the flat metric ηαβ [1]. Thus, in the weak-field slow-motion
limit, we assume that the metric inside a slowly rotating massive shell can be
written as gαβ

∼= ηαβ + hαβ , where h00 = hii = 0 and the (0i ) components of the
Einstein field equation then satisfy in the Lorentz gauge:

�h0i ∼= 16πρvi (3.29)

with solution

h0i (x) ∼= −4
∫

ρ(x′)vi (x′)
|x − x′| d3x ′ (3.30)

where ρ is the shell’s mass density and ρvi is the mass–current density.
We can then apply this result to determine the metric inside a thin shell of

total mass M and radius R, rotating with small angular velocity ω, by integrating
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expression (3.30) inside the shell, where v = ω × x. By a rotation of the spatial
axes so that ω = (0, 0, ω) and by using the mass density of a thin spherical
shell, ρ(x′) = (M/4π R2)δ(R − r ′) (we neglect here the stresses of the rotating
shell [4, 48, 49]), we have

h = − 4
∫

ρ(x′)(ω × x′)
|x − x′| r ′2 d�′ dr ′

= − M

π
ω ×

∫ π

0
sin θ ′ dθ ′

∫ 2π

0

R x̂′

|x − R x̂′| dϕ′. (3.31)

The integral over d� ≡ sin θ dθ dφ if r < R is

∫
x̂′

|x − x̂′| d�′ = 4π

3R
x.

Therefore, for any x inside the shell, we have

h ≡ (h0x , h0y, h0z) = − 4

3

M

R
ω × x

=
(

4

3

M

R
ωy,−4

3

M

R
ωx, 0

)
. (3.32)

By substituting the components of hαβ inside the slowly rotating shell in the
geodesic equation, we find that the acceleration of a test particle inside a rotating
shell, due to the spin of the shell [1, 3, 48], is

ẍ = − 8

3

M

R
ω ẏ + 4

15

M

R
ω2x

ÿ = 8

3

M

R
ωẋ + 4

15

M

R
ω2y (3.33)

z̈ = − 8

15

M

R
ω2z

where the ω2 terms are due to the other components of hαβ and may be interpreted
as a change in the inertial and gravitational mass-density of the shell due to the
velocity ωR. Due to the rotation of the shell, the test particle is affected by
forces formally similar to Coriolis and centrifugal forces. For discussions on
the interpretation of the accelerations inside a rotating shell, we refer readers
to [4, 48–50].

Finally, we have that the axes of the local inertial frames, i.e. the gyroscopes,

are dragged by the rotating shell with constant angular velocity �̇
G

, according
to [1, 3]:

�̇
G ∼= −1

2
∇ × h = 4

3

M

R
ω. (3.34)
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Figure 3.3. Geometry of light rays, with impact parameters b and −b, propagating inside
a rotating shell of radius R.

3.4.4 Time delay inside a slowly rotating massive shell

In section 3.4.1 we have calculated the time delay and the deflection due to the
spin of a body from the rotation of the mass inside a radius r [32]; however, there
is also a spin time delay and an additional deflection due to the rotation of the
external mass [51].

Inside a thin shell of mass M and radius R′ rotating with slow angular
velocity ω = (0, 0, ω), the g0i ∼= h0i components of the metric tensor are given
by (3.32). Therefore, inside a rotating shell, it is not possible to synchronize
clocks all around a closed path. Indeed, if we consider a clock co-rotating very
slowly along a circular path with radius r (r < R′), when it comes back to its
starting point it is advanced with respect to a clock kept there at rest (with respect
to distant stars). The difference between the time read by the co-rotating clock
and the clock at rest is given in [74]. Indicating with r̂1 and r̂2 the unit vectors
from the centre of a spherical shell to the two points on the shell where a light ray
enters and leaves the sphere, respectively, we have the spin time delay due to the
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rotation of the shell [74]:

�G M = −4M R′
0

3
ω · (r̂1 × r̂2). (3.35)

A general expression for the relative spin time delay due the rotation of an
external mass between two photons travelling inside the mass with (a) different
impact parameters, b1 and b2 and (b) for any finite thickness of the external shell
is given in [74]

3.4.5 Some astrophysical sources and the spin time delay due to an
external rotating shell

Let us finally report the order of magnitude of the time delay corresponding to
some astrophysical configurations.

For a lensing galaxy with a lens similar to that in the ‘Einstein Cross’ [52,53],
the relative time delay of two photons travelling at a distance of b1 � 650 pc and
b2 � −650 pc from the centre due to the rotation of the external mass is then [74]
�t � 30 min.

As a further astrophysical example, we consider two light rays deflected by
a lensing galaxy which is inside a rotating cluster or supercluster of galaxies.
We then calculate the amount of time delay due to the spin of the mass rotating
around the deflecting galaxy. To get an order of magnitude of the time delay, we
use typical supercluster parameters [54]. By considering a galaxy at the centre of
the cluster and light rays with impact parameters b1 � 15 kpc and b2 � −15 kpc
(of the order of the Milky Way radius), the time delay, by assuming for simplicity
a constant mass density, is [74]: �t � 1 day.

Finally, in [74] we show that if, in general, the lensing galaxy is not at the
centre of the cluster, the relative spin time delay between two photons, deflected
by the galaxy, that are propagating inside a rotating cluster or supercluster of
galaxies may, under special conditions, be as large as several years.

3.4.6 Discussion and conclusion on spin time delay

We have derived and studied the ‘spin time delay’ due to the angular momentum
of a body experienced by the photons of two or more images of a source observed
at a far point by gravitational lensing: this effect is due to the propagation of
the photons in opposite directions with respect to the direction of the spin of the
rotating body. We have analysed both the spin time delay caused by a central
rotating mass and in the case of photons propagating inside a massive rotating
shell with a time delay due to the rotation of the external mass.

We have also derived, in weak-field slow-motion approximation, the
deflection in the path of the images due to the spin of the deflecting body. We
have then compared the relative time delay of the photons due to spin with the
relative time delay due to the quadrupole moment of the central body.
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Finally, in order to estimate the relevance of the spin time delay in some
real astrophysical configurations, we have considered some possible astrophysical
cases; nevertheless, these estimates are preliminary because we need to use
more accurate values for the angular momentum and the other parameters of the
considered astrophysical configurations.

We can then summarize the following conclusions of our analyses:

(a) The spin time delay must be taken into account in the modelling of
relative time delays between images observed by gravitational lensing, i.e.
in addition to other time delays such as the geometrical time delay and the
delay due to the quadrupole moment of the lensing body.

(b) If other smaller time delays could be modelled accurately enough and
removed from the observations, we have shown that the large relative delay
due to the quadrupole moment of the lensing body could be removed
for some configurations of the images by using special combinations of
observables. With this method, we could measure the spin time delay due to
the rotation of a mass.

(c) The measurement of the spin time delay might, in principle, be a new
observable for the determination of the total mass of a rotating body, i.e. of
the dark matter content of such objects as galaxies, cluster and superclusters
of galaxies [74].

(d) Depending on the geometry of the system, the relative spin time delay can
be a quite large effect and may then be detected on Earth, in particular in
systems with small angular separation and small relative time delay between
the images such as B0218 + 357 [74].

3.5 Measurement of gravitomagnetism with laser-ranged
satellites

In section 3.5.1 we describe a proposed measurement of the gravitomagnetism of
the Earth and the Lense–Thirring effect, with a relative accuracy of the order
of 1%, using the satellite LARES. LARES would also perform other basic
general relativistic tests. In sections (3.5.2) and (3.5.3) we report the 1995–
2004 measurements of the Lense–Thirring effect obtained by analysing the orbits
of the laser-ranged satellites LAGEOS and LAGEOS II, confirming the general
relativistic prediction of frame-dragging with an accuracy of about 20% and about
5% in the most recent (March 2004) analysis.

3.5.1 LARES (LAser RElativity Satellite)

The main scientific objectives of the LARES mission [23] are:

(1) To perform high-precision tests of Einstein’s theory of general relativity and,
in particular, the following ones:
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(a) the accurate measurement of the Lense–Thirring effect due to the
Earth’s angular momentum and a high precision test of the Earth’s
gravitomagnetic field, with a relative accuracy of the order of 1%;

(b) a possible test, using the LARES perigee, of some recently proposed
theories [76], based on a brane-world model, which can explain the
dark-energy problem [77];

(c) improved high-precision bounds on the hypothetical very weak long-
range gravitational forces, tests of the inverse square law for very
weak-field gravity and an improved test of the equivalence principle
corresponding to ranges of the order of few thousands km;

(d) a 10−6 measurement (improved by about two orders of magnitude)
of the PPN (Parametrized-Post-Newtonian) parameter α1 testing the
existence of preferred frames in some alternative metric theories of
gravitation;

(e) a 10−3 measurement of the general relativistic perigee precession
of LARES and a high-precision measurement of the corresponding
combination of the PPN parameters β and γ in the field of Earth. The
PPN parameters β and γ test Einstein’s theory of gravitation against
other metric theories of gravitation; and

(f) other tests of general relativity and gravitation, such as improvements in
the current limits on hypothetical spatial anisotropies of the gravitational
interaction; and

(2) measurements and improved determinations in geodesy and geodynamics,
in areas such as global plate tectonics, crustal deformation and variations in
the Earth’s rotation [22, 23].

The LARES experiment is an improved version of the LAGEOS III
experiment [21]. The main differences between LARES and LAGEOS III lie in its
weight and orbital eccentricity. The new LARES satellite has been designed to be
about four times lighter than LAGEOS, with a total weight of about 100 kg, and to
be smaller than LAGEOS, with a radius of about 16 cm. The orbital eccentricity
of LARES has been proposed to be 0.04 ± 0.01, whereas the proposed orbit of
LAGEOS III had an essentially zero eccentricity [23].

In [21, 22] and [23], it is shown how, by combining the measured nodal
precessions of LAGEOS, �̇LAGEOS, and LARES, �̇LARES, we can get a very
accurate measurement of the Lense–Thirring effect, �̇Lense–Thirring. The present
2004 error budget of the LARES experiment is dramatically reduced with respect
to the previous estimates: present analyses show a total statistical error in the
LARES experiment of about 1% �̇Lense–Thirring or less over a 3 yr period. The
main improvements for this substantial reduction in the total statistical error are
described in [23, 55].

In addition to the high-precision measurement of the Lense–Thirring effect
due to the Earth’s angular momentum, the LARES experiment will provide other
important general relativistic and gravitational measurements, described earlier.
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In phase A of the LARES study, it is also shown how, by measuring the
LARES perigee rate, we could improve our present tests of the equivalence
principle by about two orders of magnitude [23]. These tests will be realized by
the use of the pericentre of LARES [56]. Indeed, a very effective way of detecting
a very weak Yukawa-like gravitational interaction is via a precise measurement
of the pericentre precession. However, the precision of such measurement is
inversely proportional to the orbital eccentricity, therefore the orbit of a new
LAGEOS-type satellite with larger orbital eccentricity would be more effective
in detecting a new, hypothetical, very weak gravitational force with a range of the
order of two Earth radii. This would improve the present limits on such interaction
by at least four orders of magnitude [57].

3.5.2 The previous 1995–2001 measurements of the Lense–Thirring effect
using the node of LAGEOS and the node and perigee of LAGEOS II

3.5.2.1 Method

In section 3.3 we have seen that the whole orbital plane is dragged by the spin of
the central object: this is the Lense–Thirring effect (3.5).

Let us now describe the 1995–2001 measurements of the gravitomagnetism
of Earth and Lense–Thirring effect using laser-ranged satellites.

Our detection and measurement of the Lense–Thirring effect was obtained
by using satellite laser-ranging data from LAGEOS (LAser GEOdynamics
Satellite, NASA) and LAGEOS II (NASA and ASI, the Italian Space Agency)
and the Earth gravitational field models, JGM-3 and EGM-96.

The measurement of distances has always been a fundamental issue in
astronomy, engineering and science in general. So far, laser-ranging has been
the most accurate technique for measuring the distances to the moon and artificial
satellites [58, 59]. Short laser pulses are emitted from lasers on Earth, aimed
at the target through a telescope and then reflected back by optical cube-corner
retroreflectors on the moon or an artificial satellite [60], such as LAGEOS. By
measuring the total round-trip travel time, one can determine the distance to a
retroreflector on the moon with an accuracy of about 2 cm and to the LAGEOS
satellites with an accuracy of a few millimetres.

The LAGEOS satellites are made of heavy brass and aluminum and are about
406 kg in weight. They are completely passive and covered with retroreflectors
and orbit at an altitude of about 6000 km above the surface of the Earth. LAGEOS,
launched in 1976 by NASA, and LAGEOS II, launched by NASA and ASI in
1992, have an essentially identical structure but they have different orbits. The
semimajor axis of LAGEOS is a ∼= 12 270 km, the period P ∼= 3.758 h, the
eccentricity e ∼= 0.004, and the inclination I ∼= 109.9◦. The semimajor axis of
LAGEOS II is aII ∼= 12 163 km, the eccentricity eII ∼= 0.014, and the inclination
III ∼= 52.65◦.
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We analysed the laser-ranging data using the principles described in [61]
and adopted the IERS conventions [62] in our modelling, except that, in the 1998
analysis, we used the static and tidal EGM-96 model [63]. Error analysis of the
LAGEOS orbits indicated that the EGM-96 errors can only contribute periodic
root-sum-square (rss) errors of 2–4 mm radially and, in all three directions, they
do not exceed 10–17 mm. The initial positions and velocities of the LAGEOS
satellites were adjusted for each 15-day batch of data, along with small variations
in their reflectivities. The solar radiation pressure, Earth albedo and anisotropic
thermal effects were also modelled [64–67]. In modelling the thermal effects,
the orientation of the satellite spin axis was obtained from [68]. Lunar, solar and
planetary perturbations were also included in the equations of motion, formulated
according to Einstein’s theory of general relativity with the exception of the
Lense–Thirring effect which was purposely set to zero. All of the tracking-station
coordinates were adjusted (accounting for tectonic motions) except for those
defining the terrestrial reference frame. Adjustments were made for polar motion,
and the Earth’s rotation was modelled from the very long baseline interferometry-
based series SPACE96 [69]. We analysed the orbits of the LAGEOS satellites
using the orbital analysis and data reduction software GEODYN II [70].

The node and perigee of LAGEOS and LAGEOS II are dragged by the
Earth’s angular momentum. From the Lense–Thirring formula [21, 24], we get
�̇

Lense–Thirring
I

∼= 31 mas yr−1 and �̇
Lense–Thirring
I I

∼= 31.5. The argument of
the pericentre (perigee in our analysis), ω, also has a Lense–Thirring drag [1];
thus, for LAGEOS we get ω̇

Lense–Thirring
I

∼= 32 mas yr−1 and, for LAGEOS II,

ω̇
Lense–Thirring
I I

∼= −57 mas yr−1 [24]. The nodal precessions of LAGEOS and
LAGEOS II can be determined with an accuracy of the order of 1 mas yr−1.
Over our total observational period of about 4 yr, we obtained a RMS of the node
residuals of about 4 mas for LAGEOS and about 7 mas for LAGEOS II [27]. For
the perigee, the observable quantity is the product eaω̇, where e is the orbital
eccentricity of the satellite. Thus, the perigee precession ω̇ for LAGEOS is
difficult to measure because its orbital eccentricity, e, is ∼ 4 × 10−3. The orbit of
LAGEOS II is more eccentric, with e ∼ 0.014, and the Lense–Thirring drag of the
perigee of LAGEOS II is almost twice as large in magnitude as that of LAGEOS.
Over about 4 yr, we obtained a rms value for the residuals of the LAGEOS II
perigee of about 25 mas [27], whereas the total Lense–Thirring effect on the
perigee over 4 yr is ∼= −228 mas.

To quantify and measure the gravitomagnetic effects precisely, we have
introduced the parameter µ that is, by definition, one in general relativity [1]
and zero in Newtonian theory.

The main error in this measurement arises from the uncertainties in the
Earth’s even zonal harmonics and their time variations. The unmodelled orbital
effects due to lower-order harmonics are comparable to or larger than the Lense–
Thirring effect. However, by analysing both the JGM-3 and EGM-96 models
with their uncertainties in the even zonal harmonic coefficients and by calculating
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th e secu lar e ff ects o f th e se u n cer tain ties o n th e o r b ital e lem e n ts o f L AGEOS a n d
LAGEOS II, we fin d [24] th at th e main sources of error in the determin atio n o f
the Lense–Thirring effect are concentrated in the first two even zonal h armonics,
J2 and J4 . We can , h owever, u se th e th r ee o b ser va b le q u a n tities �̇  I , �̇ II and ω̇II to
d e ter m in e µ [24], thereby avoiding th e two larg est sources of error—those arising
f r o m th e u n cer tain ties in J2 and J4 . We do this by solving the system of the three
equations for δ�̇  I , δ�̇ II and δω̇II in th e three unknown s µ, J2 and J4 , obtaining

δ�̇  
Exp
LAGEOS I + c 1δ�̇  

Exp
LAGEOS II + c 2δω̇ 

Exp
LAGEOS II

= µ(31 + 31. 5 c1 − 57c 2) mas y r−1 + other errors ∼= µ(60. 2 mas  yr−1)

(3.36)

wh ere c1 = 0. 295 and c 2 = −0. 35. Equation (3.36) for µ does not depend on J2
and J4 nor on th eir uncertain ties; thus, the valu e o f µ that we obtain is unaff ected
by th e largest errors, which are due to δ J2 and δ J4 , and is sensitive only to the
smaller errors due to δ J2 n , w ith 2 n ≥ 6.

Similarly, regardin g tid al, secular and seasonal changes in the geopotential
coefficients, th e main effects o n the nodes and perigee o f LAGEOS and LAGEOS
I I , cau sed b y tid al an d o th er tim e var iatio n s in th e E ar th ’s g r av itatio n a l field
[22, 26], are due to changes in J2 and J4 . However, the tidal errors in J2 and J4 and
the errors resu lting from o ther unmodelled m edium- and long-period variations in
J2 and J4 , including th eir secular and seasonal variations, are elimin ated by our
combin atio n o f the residuals of th e nodes and perigee. In particular, most o f the
errors resu lting from the 18.6- and 9 .3-yr tides, asso ciated with the lunar node,
are eliminated in our measurem en t. An ex ten sive d iscu ssio n o f th e var io u s er r o r
sources th at can affect our resu lt is given in [26], only a brief d iscussion of th e
error sources is given in the next section.

3.5.2.2 Results

In th is sectio n we report the 1995–2001 resu lts of our measurements.
In figure 3 .4, we show the lin ear combin atio n o f the residuals of th e

nodes o f LAGEOS and LAGEOS II and p erigee of LAGEOS II according to
eq u a tio n ( 3 . 3 6 ) to elim in ate th e δ J2 and δ J4 er r o r s, u sin g th e E ar th g r av itatio n a l
model JGM-3 over a 3.1-yr period and after removing ten small periodic residual
signals and the small observed inclination residuals [26].

In figure 3 .5, we d isplay an improved analy sis [27] (obtained with a lin ear
combination of the residuals of the nodes of LAGEOS and LAGEOS II and
perigee of LAGEOS II according to equation (3.36)) using the more recent static
and tidal Earth gravitational model EGM-96. We have also refined the non-
gravitational perturbations model: the total period of observations was 4 yr, longer
by about 1 year than the observational period corresponding to figure 3.4. We
have only removed four small periodic residual signals and the small observed
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Figure 3.4. C ombi nat i on of t he r e si dual s of t he nodes of L AG E O S a nd L AG E O S I I and
peri gee of L AG E O S I I accordi ng t o equat i on ( 3. 36), usi ng t he E art h gravi t at i onal m odel
JG M- 3, ove r a 3. 1 yr per i od. T he best - fi t l i ne t hr ough t hese c ombi ned r esi dual s has a sl ope
of about µMeas u red ∼= 1. 1.

in clin atio n r esid u a ls. T h e r e m ova l o f th e p e r io d ic ter m s wa s ach ieve d b y a least-
squares fit o f the residuals usin g a secular trend and four periodic signals with
periods of 1044-, 820-, 569- and 365.25-day, corresponding, resp ectively, to th e
nodal p erio d o f LAGEOS, th e p erig ee and nodal p eriods of LAGEOS II, and 1 yr.
The 820-day p erio d is the period of th e main odd zonal h armonics perturbations
of th e LAGEOS II p erig ee; th e 1044- and 569-day p eriods are the periods of th e
m a in tid al o r b ital p er tu r b atio n s, with l = 2 and m = 1 , wh ich wer e n o t elim in ated
using equation (3.36). Some combinations of th ese frequencies correspond to th e
main non-gravitational perturbations of the LAGEOS II perigee. We note that this
analysis, using EGM-96 and its accurate tidal model, is substantially independent
of the removed signals, whereas the previous analysis [26], corresponding to
figure 3.4, was in part sensitive to the periodic terms included in the fit. In other
wo rds, our valu e (figure 3 .5) for th e secular trend is not significantly changed b y
fitting additional periodic perturbations, and indeed, even the fit of the residuals
with only a secular trend, with no periodic terms increases the slope by less than

Copyright © 2005 IOP Publishing Ltd.



54 Frame-dragging and its measurement

Figure 3.5. C ombi nat i on of t he r e si dual s of t he nodes of L AG E O S a nd L AG E O S I I and
peri gee of L AG E O S I I accordi ng t o equat i on ( 3. 36), usi ng t he E art h gravi t at i onal m odel
E G M- 96 ove r a 4- yr per i od. T he best - fi t l i ne t hr ough t hese c ombi ned r esi dual s has a sl ope
of about µMeas u red ∼= 1. 1.

1 0 %. N ever th eless, in th is case, th e r m s o f th e p o st- fit r e sid u a ls in cr eases b y
about four times with resp ect to figure 3 .5.

Figure 3 .6 sh ows the fit of th e residuals obtained as in figure 3 .5 bu t with
only three periodic signals with 1044-, 820-, and 569-day periods removed.

In figures 3.4–3.6, our best-fit straight lin es, through th e combined residuals
of nodes and perigee have, respectively, the following slopes: µ1

Measured ∼=
1.1, µ2

Measured ∼= 1.1 ± 0.03, and µ3
Measured ∼= 1.1 ± 0.03, where 0.03 is the

standard deviation of the fits corresponding to figures 3.5 and 3.6 using the EGM-
96 gravitational model. This combined measured gravitomagnetic perturbation of
the satellites’ orbits corresponds in a 4-yr period to about 16 m at the LAGEOS
altitude, i.e about 265 mas.

The rms of the post-fit combined residuals corresponding to figure 3.5 and
3.6 is about 9 mas. Our total systematic error is estimated to be of the order of
30–50% of µGR corresponding to figure 3.4, and of the order of 20–30% of µGR
corresponding to figures 3.5 and 3.6.
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Figure 3.6. F i t of t he r e si dual s as i n fi gur e 3. 5 but w i t h r e mova l of onl y t hr ee per i odi c
signals with 1044-, 820-, and 569-day periods. The best-fit line through these combined
residuals has a slope of about µMeasured ∼= 1.1.

Using the JGM-3 covariance matrix, we found the errors due to the
uncertainties in the even zonal harmonics J2n , with 2n ≥ 6, to be
δµeven zonals:J2n≥J6 � 17% of µGR and, using the EGM-96 covariance matrix,
δµeven zonals:J2n≥J6 � 13% of µGR. The errors in the modelling of the perigee
rate of LAGEOS II due to the uncertainties in the odd zonal harmonics J2n+1
with EGM-96 are δµodd zonals � 2% of µGR. Using the EGM-96 tidal model,
we estimated the effect of tidal perturbations and other variations in the Earth’s
gravitational field to be δµtides+other variations � 4% of µGR. On the basis
of analyses [26, 71] of the non-gravitational perturbations—in particular, those
on the perigee of LAGEOS II—we found δµnon-gravitational � 13–20% of µGR,
including uncertainties in the modelling of the satellites’ reflectivities. The error
due to uncertainties in the orbital inclinations of LAGEOS and LAGEOS II was
estimated to be δµinclination � 5% of µGR.

Taking into account all these error sources, we arrived at a total rss error
�20–30% of µGR. Therefore, over an observational period of 4 yr and using
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EGM-96, we determin ed µMeas u red = 1. 1 ± 0. 3 , wh er e 0 .3 is th e e stim ated to tal
u n cer tain ty d u e to all e r r o r so u r ces.

Based o n the 1995–2001 analyses of the o rbits of the laser-ranged satellites
LAGEOS and LAGEOS II, we conclude th at th e g ravito magnetic or Lense–
Th ir r in g eff ect ex ists an d its va lu e a g r ees with th e p r e d ictio n o f E in stein ’s th e o r y
of general relativ ity.

Testin g our method to measure the Lense–Th irring effect and its erro r budget

A b asic concern in our analyses was to estimate the total error in our measurement
of th e Lense–Thirring effect. In o rder to support our measurement and th e
corresponding error analy sis, we have performed (a) a test and (b) a p relimin ary
blind-test simulation, explained in the following paragraphs. Fin ally, we d escrib e
our latest, 2001, measurement o f the Lense–Thirring effect over 7 .3 years o f d ata
o f LAGEOS an d L AGEOS I I , o b tain e d b y m o d e llin g o n ly th e r a d iatio n p r e ssu r e
coefficient of LAGEOS II (see figure 3 .8).

This 2001 measurement fully confirms and improves our prev ious resu lts:
the Lense–Thirring effect ex ists and its experimental value, µ ∼= 1 ± 0. 3 (± 0. 3
is th e e stim ated to tal sy stem a tic er r o r ) , f u lly ag r ees with th e g en er al r e lativ ity
prediction. It is important to note that (1) in the analysis corresponding to
fig u r e 3 .8 we o n ly m o d e lled th e r a d iatio n p r e ssu r e co efficien t o f th e satellite o n
LAGEOS II, i.e. the r eflectiv ity coefficient, CR , and no other p arameters such
as the accelerations along the track of the satellite as in our previous analyses
corresponding to figures 3.4–3.7 (th e CR of LAGEOS II shows an apparent decay,
in agreement with previous measurements [72]); (2) the rms of the residuals
corresponding to figure 3.8 is about 10 mas, whereas the total measured signal
is about 440 mas; and, finally, (3) the quality of the fit and corresponding
measurement can be improved by further reducing the rms of the 15-day fits
(corresponding to each point in figure 3.8) with further processing of the data
using GEODYN/SOLVE, thus further reducing the rms of the final fit in figure 3.8.

(a) Testing our solution for µ using the node, perigee, mean anomaly,
eccentricity and semimajor axis of LAGEOS II and node of LAGEOS. To test
our measurement of the Lense–Thirring effect with the residuals of the node and
perigee of LAGEOS II and the node of LAGEOS, we have also analysed the
residuals of the eccentricity, mean anomaly and semimajor axis of LAGEOS II.
Thus, we have produced a solution for µ by using all these orbital elements.
Indeed, using the residuals of these orbital elements, we have a system of
equations (for δ�I, δ�II, δωII, δeII, δMII, and δaII) in the unknowns: the Lense–
Thirring effect, δ J2 and δ J4 errors, and a constant and a variable, once-per-
revolution, along-track acceleration. Therefore, the solution of this system for
µ and the corresponding fit (shown in figure 3.7) are completely independent of
the adjusted accelerations and errors δ J2 and δ J4. The result of our solution with
the residuals of these orbital elements and the corresponding fit for µ is shown
in figure 3.7: the measured value of the Lense–Thirring effect is µMeasured ∼= 1.
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Figure 3.7. Solution of µ by using all the orbital elements of LAGEOS II. The best-fit line
shown through these combined residuals has a slope of about µMeasured ∼= 1.

Thus, this further analysis and the corresponding fit test and confirm our previous
result [27].

(b) Preliminary blind-test-simulation. Following a suggestion by the group
at CSR at the University of Texas, Austin [72], we have performed a preliminary
simulation and blind-test analysis. Using GEODYN, we simulated about two and
a half years of data from the LAGEOS satellites with a model of perturbations
in which the a priori value of the Lense–Thirring effect was twice its general
relativistic value. Then, we performed our standard analysis, previously explained
in this section, using the same model for the perturbations but without the Lense–
Thirring effect. By our combination (3.36) of the node and perigee of LAGEOS
II and the node of LAGEOS, obtained with an analysis of the simulated data
of the orbits of these two satellites, we found a value for µ about 1.9 times the
Lense–Thirring effect, i.e. about 95% of the value a priori set up in our simulation
of their orbits and the corresponding laser-ranging data. In this analysis, we
modelled the radiation pressure coefficients and along-track accelerations: the
result is given in [73]. We observe that this test was just a preliminary blind-test-
simulation; indeed the simulated orbits and the corresponding laser-ranging data
have to be simulated by using a perturbation model which includes variations in
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Figure 3.8. Latest 2001 measurement of the Lense–Thirring effect using LAGEOS and
LAGEOS II, obtained by modelling only the radiation pressure coefficient of LAGEOS II,
over nearly 8 yr of data. The best-fit line through these combined residuals has a slope of
about µMeasured ∼= 1 ± 0.02. The total estimated systematic error is about ±0.3.

all the relevant parameters (such as J2 and J4) within the known uncertainties.
Nevertheless, this preliminary simulation was important in that it showed the
consistency of our method and of the preliminary error budget.

(c) Finally, in figure 3.8 we display our latest 2001 measurement of
the Lense–Thirring effect using LAGEOS and LAGEOS II, obtained by just
modelling the radiation pressure coefficient of LAGEOS II, over nearly 8 yr of
data, i.e. over an observational time nearly double that of our previous analyses
[73].

This recent measurement improves our previous results and fully confirms
the general relativistic prediction of frame-dragging. In the analysis
corresponding to figure 3.8, we have only modelled the radiation pressure
coefficient on LAGEOS II and no other parameters such as the along-track
accelerations. The rms of the residuals corresponding to figure 3.8 is about 10 mas
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whereas the total measured signal is about 440 mas; nevertheless the quality of
th e fit and corresponding measurement can be improved b y furth er reducin g the
rms of the 15-day fits.

3.5.3 The recent 2004 measurements of the Lense–Thirring effect using
only the nodes of the LAGEOS satellites

3.5.3.1 Method

The accurate measurements of the Lense–T hirring effect described in this section
have been obtained over a period of observation of about 10 yr by using the
laser-ran g in g d ata o f th e satellites L AGEOS an d LAGEOS II an d th e recen tly
released Earth g ravitational field m odels EIGEN-2S and GGM01S generated b y
the dedicated satellites CHAMP and GRACE [78–83].

The models used in th is orbital analy sis are described in table 3.1.
In section 3.3 we have seen how the node and perigee of a test particle are

dragged by the angular momentum of a central body. However, whereas in our
previous determination of the Lense–Thirring effect, described in section 5.2, we
used both the nodes of LAGEOS and LAGEOS II and the perigee of LAGEOS II,
in the present analyses we have only used the nodes of LAGEOS and LAGEOS
II. Indeed, the perigee of an Earth satellite such as LAGEOS II is affected by
a number of perturbations whose impact in the final error budget is not easy to
assess and this was one of the two main concerns of Ries et al [84] (the other
concern [84] was that, in the EGM-96 model, some favorable correlation of the
errors of the Earth’s spherical harmonics might lead to some underestimated
error budget). However, this concern is absent in the present analyses. Indeed,
using the previous models (JGM-3 and EGM-96), we needed three observables
and thus we also needed to use the perigee of LAGEOS II. However, with the
recently released solutions EIGEN-2S and GGM01S [78–83], thanks to the more
accurate determination of the Earth’s gravity field, it is sufficient to eliminate the
uncertainty in the quadrupole moment and thus to use just two observables, i.e.
the two nodes of the LAGEOS satellites. In addition, we have also determined
the Lense–Thirring effect with EGM-96 and the use of the perigee of LAGEOS II,
over about 10 years of data [73]. There was a remarkable agreement using these
different techniques and the different Earth gravity models.

The nodal precessions of LAGEOS and LAGEOS II can be determined with
an accuracy of the order of 1 mas yr−1 or less. Over our total observational period
of about 10 yr, we obtained a rms of the post–fit residuals of the nodes combined
with formula (3.37), of about 11 mas both with EIGEN-2S and with GGM01S.

The main error in this measurement is due to the uncertainties in the Earth’s
even zonal harmonics and their time variations. The un-modelled orbital effects
due to the lower-order harmonics are in order of magnitude comparable to the
Lense–Thirring effect (see [73]). However, by analysing the EIGEN-2S and
GGM01S models and their uncertainties in the even zonal harmonics and by
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Table 3.1. Models used in the orbital analysis.

Geopotential (static part) EIGEN-2S and GGM01S
Geopotential (tides) Ray GOT99.2
Lunisolar and planetary perturbations JPL ephemerides DE-403
General relativistic corrections PPN except L–T
Lense–Thirring effect Set to zero
Direct solar radiation pressure Cannonball model
Albedo radiation pressure Knocke–Rubincam model
Yarkovsky–Rubincam effect GEODYN model
Spin axis evolution of LAGEOS satellites Farinella–Vokhroulicky–Barlier model
Station positions (ITRF) ITRF2000
Ocean loading Scherneck model with GOT99.2 tides
Polar motion Estimated
Earth rotation VLBI + GPS

calculating the secular effects of these uncertainties on the orbital elements
of LAGEOS and LAGEOS II, we find that the main source of error in the
determination of the Lense–Thirring effect is just due to the first even zonal
harmonic, (J2) (see later).

We can, however, use the two observable quantities �̇I and �̇II to determine
µ [21, 22, 24], thereby avoiding the largest source of error arising from the
uncertainty in J2. We do this by solving the system of the two equations for
δ�̇I and δ�̇II in the two unknowns µ and J2, obtaining for µ:

δ�̇
Exp
LAGEOS I + cδ�̇Exp

LAGEOS II

= µ(31 + c31.5) mas yr−1 + other errors ∼= µ(48.2 mas yr−1) (3.37)

where c = 0.545. Equation (3.37) for µ does not depend on J2 nor on its
uncertainty; thus, the value of µ that we obtain is unaffected by the largest error,
due to δ J2, and is sensitive only to the smaller uncertainties due to δ J2n , with
2n ≥ 4.

Similarly, regarding tidal, secular and seasonal changes in the geopotential
coefficients, the main effects on the nodes of LAGEOS and LAGEOS II caused
by tidal and other time variations in Earth’s gravitational field [22, 23] are due
to changes in J2; e.g. by the uncertainty in the 18.6 yr lunar tide, with the
period of the Moon node, the change in J2 due to the post-glacial rebound and
by the anomalous variation in the quadrupole coefficient (see later). However,
the tidal errors in J2 and the errors resulting from other un-modelled medium-
and long-period variations in J2, including its secular and seasonal variations,
are cancelled by our combination of node residuals (3.37). In particular, most
of the errors resulting from the 18.6 and 9.3 yr tides, associated with the lunar
node, are cancelled in our measurement. The various error sources that can affect
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the measurement of the Lense–Thirring effect using the nodes of the LAGEOS
satellites have been extensively treated in a large number of papers by several
authors [21–24, 26, 64–68, 71]—the main error sources are treated in [73].

3.5.3.2 Results

The orbital perturbations of a satellite may be either secular and periodical.
Among the secular perturbations of the node of the LAGEOS satellites, there
are: the shift of the nodal line due to the even zonal harmonics of the Earth’s
gravitational field [41], the de Sitter effect and frame-dragging. The de Sitter
effect has been measured with an accuracy of about 7 × 10−3, its effect is only
19.2 mas on the LAGEOS node and thus its uncertainty is negligible in the Lense–
Thirring measurement. However, the uncertainty in the even zonal harmonics
is a crucial factor in the determination of frame–dragging since an error in one
of the lower even zonal harmonics may be large enough to be indistinguishable
from the Lense–Thirring nodal drag. This type of critical error is treated later.
However, the periodical perturbations of the node of the LAGEOS satellites may
also be a crucial factor in the determination of frame–dragging and, in particular,
the uncertainty in the perturbations with a long-period compared to the period
of observation may be critical. Effects with a period much shorter than the
observational period are averaged out. In the present determination of the Lense–
Thirring effect, we have three basic factors that make the error due to periodical
effects in the measurement of frame–dragging negligible and also make this error
easy to assess in the final error budget. These basic factors are:

(i) The period of the present analyses is about 10 yr and thus all the periodical
perturbations of the nodes are basically averaged out apart from the 18.6 yr
tide associated with the Moon node, however, the main effect of this tide is
a change of the J2 coefficient that is cancelled out using our combination of
observables (3.37).

(ii) Since the original proposal of the LAGEOS III experiment [21], numerous
researchers [21–24, 26, 64–68, 71] have treated the perturbations affecting
the LAGEOS node in order to determine the Lense–Thirring effect and have
concluded that the only critical perturbations on the nodes of the LAGEOS
satellites are those due to the Earth’s even zonal harmonics. However, as
shown later, they contribute with an error of about 17.8 % (using the EIGEN-
2S model) due to the high accuracy of the recent Earth’s gravity field model
EIGEN-2S (and GGM01S).

(iii) In regard to the periodical perturbations, in addition to a detailed treatment of
the various perturbations affecting the LAGEOS node and their uncertainties
given in [73], a simple but very meaningful test shows that the periodic
perturbations cannot introduce an error larger than about 4% in our
determination of the Lense–Thirring effect.
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Figure 3.9. F i t of t he r e si dual s of t he nodes of L AG E O S a nd L AG E O S I I , usi ng our
combi nat i on ( 3. 37) and t he E a r t h m odel E I G E N - 2S , w i t h a s ecul a r t r e nd onl y. T he s l ope
is µ ∼= 0. 99 and t he r m s of t he post - fi t r e si dual s i s 17. 5 m as.

Indeed, sin ce th e p eriods of th e g ravitational and non-grav itational o rbital
perturbations (but not th eir amplitude) are very well determin ed, we h ave also
fitted for a number o f p eriodic effects togeth er with th e secular trend. We have
done a number o f d ifferent fits, each with diff erent p eriodical perturbations. We
then compared the r esult in the case o f th e fit with a secu lar tr e n d o n ly with th e
various resu lts wh en, togeth er with a secular trend, we have in cluded a different
number of the main periodic perturbations. The result is that the maximum
deviation of the secular trend from the case of its fit with no periodic perturbations
does not exceed 4% of the Earth’s frame-dragging as is clearly displayed in
figures 3.9–3.12 and the corresponding captions. Of course, the rms of the fit is
much smaller when we include a substantial number of periodic perturbations.
Therefore, the two concerns of Ries et al [84], which do not impinge on the
method or the value of the Lense–Thirring effect that we had obtained in our
previous analyses [26–28] but rather our previous error budgets (claimed by Ries
et al to be optimistic by a factor two or three), cannot be applied to the present
analyses, as explained later and in [73]. Indeed, the first concern regarding the
perturbations of the perigee of LAGEOS II is clearly absent in the present analyses
since we use here only the nodes of the LAGEOS satellites and we do not use the
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Figure 3.10. Fit of the residuals of the nodes of LAGEOS and LAGEOS II, using our
combination (3.37) and the Earth model EIGEN-2S, with a secular trend plus ten periodical
terms. The slope is µ ∼= 0.97 and the rms of the post-fit residuals is 11 mas.

perigee. Second the concern regarding the high correlation of some of the even
zonal harmonics of the EGM-96 model is also substantially absent in the present
analyses—indeed the Earth models we use here have a low correlation between
the even zonal harmonics (see later and the related discussion in [73]).

In conclusion, in the analysis with EIGEN-2S, we have a total error budget
of about 18% of the Lense–Thirring effect. Even by increasing the error due to
the Earth’s even zonal harmonics by 50%, we have a relative error due to the even
zonals of 26.7% and a total error budget of 26.8% of the Lense–Thirring effect.

The main perturbations in our determination of the Lense–Thirring effect are
described and analysed in [73].

In the present analysis, we have used EIGEN-2S and GGM01S; however,
these models are preliminary in the sense that they have been obtained over
relatively short periods of observations by CHAMP and GRACE. Thus, the values
of the Earth’s spherical harmonic coefficients may change appreciably with longer
periods of observations. In particular, the uncertainties in the Earth’s zonal
harmonics include only tentatively systematic errors in GGM01S and are only
formal errors in EIGEN-2S. However, our analysis is not sensitive to changes
in the Earth’s quadrupole moment—it is just affected by changes in the higher
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Figure 3.11. F i t of t he r e si dual s of t he nodes of L AG E O S a nd L AG E O S I I , usi ng our
combi nat i on ( 3. 37) and t he E a r t h m odel G G M01S , w i t h a s ecul a r t r e nd onl y. T he s l ope i s
µ ∼= 1. 26 and t he r m s of t he post - fi t r e si dual s i s 18 mas.

zonal h armonics. Therefore, future m or e accurate determinations of the even
zonal coefficients and o f their uncertain ties m ight lead to diff erent values o f µ
and to a different total error budget. Nevertheless, it is crucial to note that when a
more accurate model u sing GRACE, CHAMP o r GOCE b ecomes available, it will
be straightforward to, assess a posteriori th e total error o f our present analy ses
very accurately. I ndeed, one will just n eed to take the d ifferences between the
valu es of th e even zonals of th e EIGEN-2S and GGM01S models presently used
with the corresponding values of the future m ore accurate model from GRACE,
CHAMP o r GOCE a n d co n sid er th e u n cer tain ties in th e se f u tu r e m o d e ls. T h u s,
the total error in the present m easurement o f µ d u e to th e u n cer tain ties in th e J2 n
coefficients can be easily re-estimated.

In figures 3.9–3.12, we report our determin atio n o f the Lense–Thirring
effect, obtained u sing the nodal r ates of the LAGEOS and LAGEOS II satellites
over a period of about 10 yr. Figure 3.9 displays the combination of the nodes
according to formula (3.37), r epresenting the measurement o f the Lense–Thirring
effect usin g the EIGEN-2S model: th e slope is 0. 99µ. Figure 3.10 shows our
measurement of the Lense–Thirring effect using EIGEN-2S by fitting the orbital
residuals with a secular trend contemporarily with ten main periodic effects: the
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Figure 3.12. F i t of t he r e si dual s of t he nodes of L AG E O S a nd L AG E O S I I , usi ng our
combi nat i on ( 3. 37) and t he E a r t h m odel G G M01S , w i t h a s ecul a r t r e nd pl us t e n per i odi cal
terms. The slope is µ ∼= 1.22 and the rms of the post-fit residuals is 11 mas.

slope is 0. 97µ. Figure 3 .11 d isplays the comb ination o f the nodes according to
formula (3.37), representing the measurement of the Lense–Thirring effect using
GGM01S: the slope is 1.26µ. Figure 3.12 shows our measurement of the Lense–
Thirring effect using GGM01S by fitting the orbital residuals with a secular trend
contemporarily with 10 periodic effects: the slope is 1.22µ.

In conclusion, by fitting our combined residuals with only a secular trend,
using EIGEN-2S, we found that

µ = 0.985 ± 0.182 (3.38)

where µ ≡ 1 in general relativity. By fitting our combined residuals with a secular
trend plus 10 periodic signals and, using EIGEN-2S, we found that

µ = 0.965 ± 0.182. (3.39)

The rms of the post–fit residuals was 17.5 mas in the case of the fit of secular
trend only and 11 mas in the case of the fit of a secular trend plus 10 periodic
signals.
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By fitting our combined residuals with a secular trend plus ten periodic
signals and using GGM01S, we found that

µ = 1.22 ± 0.239.

The rms of the post-fit residuals was 18 mas in the case of the fit of a
secular trend only and 11 mas in the case of the fit of a secular trend plus
10 periodic signals. However, since the covariance matrix of GGM01S was
not available, we could not assess the total systematic error using GGM01S
accurately. Nevertheless, by simply adding the absolute values of the errors due to
the published uncertainties in each GGM01S even zonal coefficient, we obtained
a maximum error of 23.6% in µ, due to the error in the Earth’s static gravity field,
and a total rss error of 23.9% of µ (since, by far the most dominating error source
is due to uncertainties in the static even zonal harmonics).

By fitting our combined residuals with two six or ten periodic terms, we
basically obtained the same value for the Lense–Thirring effect with a maximum
variation of 4% only. Furthermore, the two determinations of the Earth’s
frame-dragging effect obtained with EIGEN-2S and GGM01S are practically in
agreement with each other within their uncertainties (∼= 18% for EIGEN-2S and
∼= 24% for GGM01S).

Our measured value of the Lense–Thirring effect corresponds to 97% (in
the improved fit with ten frequencies and 99% in the fit with a trend only) of
Einstein’s theory prediction (using EIGEN-2S) and thus, since our experimental
uncertainty is about 18%, it fully agrees with the general relativistic prediction.

We note that the only uncertainty in our present error budget is due to the
published errors in the EIGEN-2S and GGM01S models that do not include (in
EIGEN-2S) or might just underestimate the systematic errors (in GGM01S) in
the determination of the even zonal harmonics. However, when more accurate
models of the Earth’s gravity field become available, it will be straightforward to
evaluate the accuracy of the EIGEN-2S and GGM01S models we have used here
(by substantially taking the difference between the corresponding coefficients).
This will provide, a posteriori, a solid re-assessment of the error in the present
determination of frame-dragging.

In addition, we also analysed the LAGEOS satellites data using the older
model EGM-96 and our previous method of combining the nodes of the LAGEOS
satellites with the perigee of LAGEOS II. However, the present period of analysis
was about 10 yr, i.e. about 2.5 times longer than any previous period of analysis.
This measurement of µ with EGM-96 was in full agreement with our previous
determination of frame-dragging [73].

Finally, we note that, in addition to the accurate measurement of the
Lense–Thirring effect, we have observed an anomalous increase of the Earth’s
quadrupole coefficient J2 since 1998 in the orbital residuals of LAGEOS and
LAGEOS II. This change we observe in J2 is in good agreement with the J2
variation observed by Cox and Chao [85].
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In conclusion, the Lense–Thirring effect exists and its experimental value—
µ = 0.97 ± 0.18—fully agrees with the prediction of general relativity [73].
Recently, in March 2004, we have obtained an improved measurement in the
Earth’s frame-dragging using the newest model provided by the GRACE satellites,
this recent result fully agrees with general relativity with an error of ∼=5% only
[75].
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Chapter 4

The special relativistic Equivalence
Principle: gravity theory’s foundation

Kenneth Nordtvedt
Northwest Analysis, 118 Sourdough Ridge, Bozeman, MT 59715,
USA

4.1 Introduction

Wh en Einstein formulated his g rand hypothesis, th e Equivalence Princip le (EP)
and then u sed that p rincip le to make his two classic p redictions—that g ravity
deflects light and alters clock r ates—h is arguments rested on only the most
r u d im e n tar y f eatu r e o f h is sp ecial r e lativ ity th eo r y : h e e ssen tially em p loy ed
Newtonian physics. A light ray ( illustrated in figure 4 .1 by the finely dotted line)
leaves an upwardly accelerating floor at initial angle +φ and it again meets the
floor at a later time T and at horizontal distance L as determined from the two
Newtonian equations

cT sin φ = 1
2 gT 2 and cT cos φ = L .

On reunion at time T , the light ray makes a descending angle −φ with respect to
the floor: the rate per unit time for the deflection of that light ray with respect to
the floor is then (in the small φ limit) dφ/dt ∼= g/c, or expressed as deflection
rate per distance travelled, dφ/dx ∼= g/c2. Light-ray pulses are also indicated
in figure 4.1, propagating between a clock C anchored to the accelerating floor
and another clock C′ anchored at height h above the floor. The time transfer
relationship between the times the light leaves the former (t1) and arrives at the
latter (t2) is obtained from the Newtonian equation

1
2 gt2

1 + c(t2 − t1) = h + 1
2 gt2

2 (4.1)

which, in a first approximation yields a relative rate for these times

dt2
dt1

� 1 + gh

c2
.
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72 The special relativistic Equivalence Principle

Figure 4.1. Einstein’s original Equivalence Principle arguments. In the accelerating
left-hand box, (1) the floor reaches bodies A and B, both at rest in inertial space, at the
same time, (2) the floor’s right-hand edge has accelerated upwards to meet the light ray
and (3) light pulses sent out by each tick of clock C (anchored to the floor of the box) are
received at a slower rate by clock C′ (anchored to the ceiling of the box) because of the
latter clock’s upward motion acquired during the light pulses’ times of flight; and the light
pulses can be reflected or transponded back to clock C. If equivalent phenomena are to
occur in the right-hand box which is at rest in gravity, then (1) bodies A and B must fall
at precisely identical rates, (2) light is deflected by gravity, (3) clock C ticks slower than
clock C′ by virtue of its different location in a gravitational potential and (4) the round-trip
ranging time measured by clock C is less than 2h/c.

If round-trip ranging experiments using light had been contemplated by Einstein
a century ago, he could also have predicted the local outcome of such ranging
measurements by adding to equation (4.1) a relationship for the light’s return trip,

h + 1
2 gt2

2 − c(t3 − t2) = 1
2 gt2

3 (4.2)

which when added to the outbound time gives the round-trip’s total elapsed time

t3 − t1 ∼= 2h

c
− gh2

c3
.

This EP-derived ranging time for local experiments is substantiated in metric
theories of gravity such as general relativity and its scalar–tensor variations. The
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EP predictions of light’s deflectio n in g ravity have been claimed b y some to b e
no more th an earlier p redictions of mechan istic d e flectio n o f lig h t co r p u scles
tr avellin g a t th e fin ite sp eed c . This mechanistic viewpoint, h owever, would
predict a sp eedin g u p o f light as it approached matter, not th e slowing obtained
from the EP [4].

Th e th ir d p h e n o m en o n illu str a ted in fig u r e 4 .1 co n sists o f th e g en er ally
different bodies A and B which are at rest and located side by side in inertial space.
The upwardly accelerating floor then meets both of these bodies simultaneously:
indeed it was Einstein’s contemplation of this identity of free fall which led him
to his principle.

Requiring these observational results to occur also in gravity by virtue of the
EP, the interpretations must now be that the local gravitational acceleration g (1)
deflects a transversely propagating light ray, (2) changes clock frequencies f with
altitude h and (3) increases the speed of light (as measured by a ground clock) by
the previously derived rates,

dφ

dx
= 1

f

d f

dh
= 1

c

dc

dh
= g

c2

and (4) different bodies A and B fall in gravity at precisely identical rates. Special
relativity played almost no role in arriving at these conclusions.

But the EP can predict a number of additional novel phenomena. By fully
utilizing special relativity when exploring implications of the EP, converting it
into the Special Relativistic Equivalence Principle (SREP), further effects can be
predicted which include (1) geodetic precession of a body’s inertial orientation as
it free-falls non-vertically in gravity, (2) a relativistic (1/c2 order) contribution to
the precession of the major axes of gravitational orbits (such as Mercury’s) and
(3) a gravitomagnetic precession of a body’s inertial orientation by virtue of a
moving source of gravity, as well as a general gravitational interaction between
mutually moving masses and between moving mass and light.

The derivation of these new consequences of equivalence follows the spirit
of the original EP arguments. Novel phenomena are first derived as they occur in
gravity-free, accelerated laboratories. To analyse body and light ray trajectories,
clock rates and behaviour of other experimental devices, we set up a master
inertial frame with its observer and clock at rest and, from that perspective,
the calculations of clock, body and light behaviours can be performed. In this
gravity-free inertial frame, light rays travel along straight lines at a unique speed
c, free bodies move at constant velocities and arbitrarily moving clocks ‘tick’ at
the special relativistic proper rate

dτ = dt
√

1 − v(t)2/c2 (4.3)

expressed in terms of the rate dt of a clock at rest in the master inertial
frame. A ‘ground’ floor of clocks are synchronously given equal and constant
(properly measured by accompanying accelerometers) upward accelerations. To
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keep th e interpretations of various measurable phenomena as straightforward
and free o f controversy as possible, th e experimental observables are confined
to measurements made on this ground fl oor of accelerating clocks ( later, of
course, an equivalent array o f clo cks is d eployed o n the actual ground in a local
g r av itatio n a l field ) . Sp ecial r e lativ ity ’s Lo r e n tz tr a n sf o r m atio n , u sed to r e late
event coordinates as measured in two inertial frames which move at constant
velocity relative to each other, is need ed: in the case o f a transf ormation to a
frame moving at sp eed v in th e y - d i r ect i on , for ex ample, new coordinates are
related to o riginal ones b y

d t ′ = γ (d t − v d y/c 2)

d y ′ = γ (d y − v d t)

d x ′ = d x

d z′ = d z

with

γ = 1√
1 − v  2/c 2 

.

The types o f gedanken experiments analy sed in this g ravity -free situ atio n o f a
ground floor of upwardly accelerating clocks are sh own in the bottom p icture of
figure 4 .4. Both bodies and light rays which are given free trajectories o n initially
leav ing the accelerating g round floor are considered. The bodies may carry
clocks and h ave extension (orientation). At future times, there will be reunions
of th e body (clo ck) trajectories and light trajectories with th at of th e upwardly
accelerating g round floor. Various measurable quantities are then recorded at
th ese reunion events: such measurements in clude th e elapsed proper times of
various clocks, the body orientations, horizontal locations of reunions, etc. Th e
SREP then requires identical resu lts for the sa me measurable quantities in g ra vity,
as shown in the top p icture of figure 4 .4. I n o rd er to achieve this identity of resu lts,
unique gravity-induced modifications to the speed of light function, to the body
eq u a tio n o f m o tio n a n d to th e c lo ck ra te fu n c tio n a re d e termin ed a n d ro ta tio n s o f
an inertial rod with respect to the ground during free fall motion are required.

Consider a rod which travels at constant velocity and without rotation
through gravity-free inertial space. (‘Non-rotation’ of the rod can be established,
for instance, by attached accelerometers which record no centrifugal forces.)
As sh own in figure 4 .2, the trajectory o f this rod is twice crossed b y that o f
an upwardly accelerating ground floor of the non-inertial laboratory. In the
instantaneous rest frames of those two crossing events, the orientations of the rod
with respect to the ground are determined and found to differ. When the SREP
is then invoked and a rod free-falling in gravity (and free of absolute rotation) is
considered, this same change in orientation will be required but that rotation must
now be interpreted as a precession of the rod’s inertial orientation by virtue of its
motion through the local gravity—geodetic precession or, by virtue of the motion
of the source of gravity, gravitomagnetic precession.
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Figure 4.2. Gravitomagnetic precession from the Equivalence Principle. The top scene
shows an upwardly accelerating floor and a non-rotating rod moving freely through
gravity-free space. Floor and rod meet twice and an observer moves at constant proper
velocity along the floor to be present at both events. The middle scene shows the meetings
in the two instantaneous rest frames of the observer. The relativity of simultaneity in the
Lorentz transformation for time results in different rotations of the rod in the two events.
The EP calls for the same observable outcomes in gravity: this predicts the gravitomagnetic
rotation relative to the ground of an inertially non-rotating rod due to a moving source of
the gravity. The bottom scene also shows that the rod’s gravitational free-fall trajectory
is not vertical as viewed from the observer. This specifies the local gravitomagnetic
contribution to the gravitational equation of motion.

4.2 Gravitomagnetic precession due to moving gravity source

As viewed from a master inertial frame (top panel of figure 4.2), at time t = 0 a
horizontal rod leaves a floor with horizontal velocity component vx and vertical
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Figure 4.3. G e odet i c pr ecessi on f r om t he E quiva l e nce P r i nci pl e . T he t op s cenes show n
from perspect ive of a master inertial frame show an intrinsically non-rotating rod bot h
when i t l eaves and w hen i t agai n meet s an upwardl y accel erat i ng fl oor. A ft er L orent z
t r ansf or mat i ons t o t he i nst a nt aneous r e st f r a mes of t he obser ve r ( fi xed on t he fl oor )
i ndi cat ed by symbol s © , t he or i e nt at i ons of t he r od r e l a t ive t o t he fl oor ar e s how n by
the dotted rod. The key time L or e nt z t r a nsf or m at i on r esponsi bl e f or t he r od r eor i ent a t i on i s
show n i n t he upper l ef t - hand cor ner of t he fi gur e. A ssumi ng t he S R E P, t he fi gur e’s bot t om
scene s how s t he s ame r ot at i on of t he r od i n gr avi t y but w hi ch now m ust be i nt er pr et ed as
ge odet i c r ot a t i on of t he i ner t i a l f r a me w hi c h m ove s t hr ough gr avi t y w i t h t he r od.

ve lo city vy [3]. An observer travels along th e floor at constant horizontal proper
sp eed w selected so as to ar r ive at th e f u tu r e r eu n itin g eve n t o f r o d a n d flo o r.
The floor accelerates upward as y ∼= gt2/2. In the t ′ = 0 rest frame of this
observer, the time Lorentz transformation indicates different times as measured in
the master inertial frame for the two ends of the rod

t = γ (t ′ + V · r ′/c2) with γ = 1√
1 − v2/c2

(4.4)

with the right-hand side of the rod having the later time t value. With the rod
in itially m ov in g u p f r o m th e flo o r, th e m id d le p an el o f fig u r e 4 .2 in d icates th e
rod’s initial orientation as seen in the observer’s rest frame. The difference
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Figure 4.4. Clock/rod and light ray leave and rejoin the ground: two views. The bottom
view of events is as seen by a master inertial observer at rest in gravity-free space. At time
t = 0, a light ray (broken line) is launched at angle φ and a non-accelerating, non-rotating
rod with clock is launched at angle tan−1(vy/vx ) (full line), and then ray and rod meet an
upwardly accelerating ‘ground’ clock at the latter’s times τC and τA, respectively. Another
‘ground’ clock moves at constant proper speed w to the right to also meet the rod/clock
at the reunion event. The non-accelerating (free falling) clock records the time τF for its
reunion event, and the right-moving ‘ground’ clock records the time τB = τA

√
1 − w2/c2.

The trajectories of the three clocks and the light ray as recorded in the master inertial frame
are indicated. The top view shows the same physical events occuring in gravity. The SREP
requires all observables, such as the clock readings at the reunions etc, to have identical
values in the two situations.

between rod orientation angles seen in the two frames is readily evaluated to be
vxvy/c2 in leading relativistic order.

The upwardly accelerating floor meets the rod again at time T ∼= 2vy/g
by which time the floor is travelling upward at speed of about 2vy . In the
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in stantaneous rest frame of th e observer at this second meetin g o f floor with rod,
th e L o r en tz tr an sf o r m a tio n g iven in eq u a tio n ( 4 . 4 ) can ag ain b e u sed to fin d th at
th e m aster in e r tial f r a m e tim e f o r th e r ig h t- h an d e n d o f th e r o d is later th a n th a t
f o r th e r o d ’s lef t- h a n d en d . Bu t sin ce th e r o d is n ow tr ave llin g d ow n r elative to th e
floor at sp eed of about vy , the relationship b etween rod o rientations as seen in the
master inertial frame and instantaneous rest frame of the observer is n ow reversed
as also sh own in the middle p anel of figure 4 .2: the latter o rientatio n is n ow tu rned
down from the horizontal orientatio n b y angle which is again vxv y/c 2 . D iv id in g
by the total elapsed time T between th e two events, one obtains a p recession rate
for the rod relative to the floor

�̇LT ∼= g vx

c 2 (4.5)

lab e lled ‘ LT ’ in r eco g n itio n o f th e p io n eer in g wo r k o f L en se an d T h ir r in g
concerning th is precession in general relativ ity th eory [6]. As seen from a frame
o f r e f e r e n c e a t r est w ith th e o b ser ve r, a r o d is lau n c h e d ( alm o st) ver tically in to
grav itational free-fall. Upon retu rn to th e g round, th e rod has rotated wh ile
nevertheless not experiencing internal centrifugal accelerations. An observer
moving at constant velocity along an upwardly accelerating floor detects h is/her
own motion: th ere is a preferred frame on th is floor established b y special
r e lativ ity. I n g r av ity, h owever, th e o n ly ava ilab le ex p lan atio n f o r th is r o tatio n
is th e observer’s p resence in a grav itational field and th e leftward horizontal
m o tio n o f th e g r av itatio n a l so u r ce r e lative to th e o b ser ve r ’s f r a m e . I n p ro x imity
to a moving source of gravity, the local inertial frame must rotate! The
slight non-verticality of the free-fall trajectory which is another consequence of
gravitomagnetism is discussed in section 4.4.

4.3 Geodetic precession due to motion through gravity

Th e to p p an el o f fig u r e 4 .3 illu strates th e g eo d etic p r ecessio n case. Two o b servers
are fixed on the floor: one is located where a rod is launched upward from the
floor and another is located where the rod again meets the upwardly accelerating
floor. It is convenient to orient the rod at 45 degrees with respect to the floor—
at this orientation, the two different Lorentz contractions of the rod seen in the
instantaneous rest frames of the two observers produce identical angular change
in the rod with the floor and the discussion is simplified. The instantaneous rest
frame of the observer at the t = 0 event coincides with the master inertial frame,
so the solid rod indicates the orientation measured in that observer’s instantaneous
rest frame. But the second observer is moving upward at speed of about 2vy when
the second meeting of rod and floor occurs. Therefore, the Lorentz transformation
of times given in equation (4.4) must again be used to understand this latter event.
At some time in the second observer’s instantaneous rest frame for the meeting,
the time Lorentz transformation measures a time difference for the rod’s two ends
as seen in the master inertial frame of δt ∼= 2vy R/

√
2c2 with R being the length
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o f th e r o d . I n th is tim e in ter va l, th e r ig h t- h an d e n d o f th e r o d m ove s d istan c e
δ x ∼= √

2vxv  y R/c 2 further to the right, thereby decreasin g the angle b etween th e
rod and the floor in amount vxv y/c 2 . D iv id in g b y th e to tal tim e T between these
even ts th en y ield s th e p r ecessio n r a te r e lative to th e flo o r,

�̇geodetic ∼= 1

2

gvx

c 2 
. (4.6)

Sin c e th e o b ser ve r s in th is case a r e at r e st with r e sp ect to th e so u r ce o f g r av ity,
th is precession of th e inertial rod must be explained as b eing due to th e motio n o f
th at rod transversely through th e g ravitational field, i.e. geodetic precession.

4.4 General consideration of the observables

A rod with clock moves at constant velocity and without rotation through the
master inertial frame as sh own in figure 4 .4. At t = 0, its lower end ‘1’ leaves the
floor (ground) which is upwardly accelerating. Expressed in the master inertial
frame which, for convenience, is selected to coincide with the instantaneous rest
frame of the floor at t = 0, the trajectories of the rod’s two ends are

x1(t) = vx t and x2(t) = x1(t) + X (4.7)

y1(t) = vy t and y2(t) = y1(t) + Y (4.8)

with X , Y , vx and vy all positive [2]. The ‘fixed ground’ clocks have no horizontal
motion and the common vertical motion

y(t) = c2

g

(√
1 + (gt/c)2 − 1

)
(4.9)

which manifests constant acceleration g as measured by accelerometers
accompanying these clocks. The y-motion given in equation (4.9) catches up
with y1(t) from equation (4.8) at master inertial frame time

T = 2vy

g

1

1 − v2
y/c2

(4.10)

which event occurs at horizontal location

L = vx T (4.11)

with the floor moving upward at speed

V = 2vy

1 + v2
y/c2 (4.12)
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as measured in the master inertial frame. The rod’s vertical velocity relative to the
floor, as measured in the rest frame of the floor at the reunion event, is obtained
using the special relativistic transformation rule for velocities:

v′
y = vy − V

1 − vy V/c2
= −vy

an unsurprising result. At this reunion event, the horizontal velocity of the rod as
measured in the instantaneous rest frame of the ground is found to be equal to its
original horizontal velocity, so the trajectory’s locally measured arrival angle is
the negative of the original locally measured departure angle.

In the instantaneous rest frame of the floor at reunion with the rod end ‘1’,
the master inertial frame event coordinates are

t ′1 = γ T (1 − vy V/c2) x ′
1 = vx T y ′

1 = γ (vy − V )T

with

γ = 1√
1 − V 2/c2

.

In this frame, and at the moment its end ‘1’ meets the floor, we also want to know
where the rod’s other end ‘2’ is. From the time transformation of special relativity,
we have

t ′1 = γ (t2 − V (Y + vy t2)/c2)

which gives

t2 = T + Y
V

c2 − vy V
.

The location of rod end ‘2’ at that moment is then

x ′
2 = X + vx

(
T + Y

V

c2 − vy V

)

y ′
2 = γ

(
Y + (vy − V )

(
T + Y

V

c2 − vy V

))
.

The orientations of the rod at the two crossings of the floor can now be
compared. Constructing the tangents of the angles the rod makes with the floor in
the two instances, measured in each case in the floor’s instantaneous rest frame,

tan φ = (y2 − y1)/(x2 − x1) = Y

X

tan φ′ = (y ′
2 − y ′

1)/(x ′
2 − x ′

1) = Y

X
γ

c2 − V 2

c2 + vx V Y/X − vyV

the difference between these angles represents a change in the rod’s orientation
relative to the floor in a clockwise sense. In the limit of small vertical velocities
of the rod, this rotation angle is

δφ � vxvy

c2
(1 − cos 2φ).
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The cos 2φ term of this expression is simply due to the change in the Lorentz
contraction of the rod as its velocity components (with respect to the floor)
have changed from (vx , vy) to (vx ,−vy). The remaining constant term of the
expression is equivalent to a secular precession rate

dφ

dt
= 1

2

gvx

c2 (4.13)

which confirms the conclusion in section 4.3. The SREP requires this precession
also to occur for an inertial rod which is on a free-fall trajectory in gravity.

How dramatic it would have been in the era 1907–11 when Einstein had
still no theory of gravity but only his Equivalence Principle, if he had publically
predicted not only that inertial frames are local, not global, and undergo free-fall
acceleration in gravity but also that if these frames are moving non-radially in that
gravity, they must rotate with respect to more distant inertial frames! It remained
until just after Einstein’s publication of his complete theory of general relativity
for Willem deSitter in 1916 to discover by calculation the full geodetic precession
contribution to the Moon’s perigee rotation rate with respect to distant inertial
space, one-third of which has here been shown to follow from the SREP [12].

Additional observables can be established by considering a number of
clocks, some in free motion, some fixed in position on the upwardly accelerating
ground floor and others moving at constant proper speed along the upwardly
accelerating ground floor. Each of these clocks undergoes an interval of elapsed
proper time which depends on its specific motion in the master inertial frame

dτi =
√

1 − vi(t)2/c2 dt (4.14)

with dt being the elapsed proper time increment of a clock at rest in the master
inertial frame. Using the previously derived master time of reunion of the rod
end ‘1’ (also carrying a clock) with the ground, given by equation (4.10), this free
clock on the rod records this reunion event at an elapsed proper time since launch

τ (vy, vx )F = T
√

1 − (v2
x + v2

y)/c2

= 2vy

g

√
1 − (v2

x + v2
y)/c2 1

1 − v2
y/c2 . (4.15)

The trajectory of the fixed ground clock’s trajectory is given by equation (4.9):
integrating the proper time expression given by equation (4.14) then gives that
clock’s elapsed proper time between the launch event and the reunion event with
the free-falling clock

τA =
∫ T

0

√
1 − (dy/dt)2/c2 dt = c

g
sinh−1(gT/c)

= c

g
sinh−1

(
2vy

c

1

1 − v2
y/c2

)
(4.16)
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which is independent of vx , unlike the case for th e elapsed proper time o f the free
(freely falling) clock.

A th ir d ty p e o f clo c k p er m its an in ter e stin g var iatio n o n th is ex p e r im e n t in
which the same ground clock records both the launch from and reunion with
the g round of the freely falling clock. This is achieved b y g iv ing that g round
clo c k a n in itial velo c ity w to th e r ig h t su ch th at it ar r ive s a t h o r izo n tal lo catio n L
simu ltan e o u sly with th e freely fallin g c lo ck . Becau se o f th e u p ward acceleratio n
of th e g round, its horizontal velo city does not remain constant as seen in th e
master inertial frame: it m oves according to

d x/d t = w

√
1 − (d y/d t)2/c 2

wh ich, however, fulfils th e requirement th at no horizontal force acts o n the clock

d

d t

d x/d t√
1 − v  2/c 2 

= 0

and that equal intervals of x are travelled p er unit o f p roper time r ecorded on the
horizontally moving clock. Since we want the simultaneous arrival o f the free-
fa llin g clock and th e clo ck moving along th e g round, th is requires∫ T

0
(d x/d t) d t = w

∫ √
1 − (d y/d t)2/c 2 d t = L

r e q u ir in g an in itial h o r izo n tal sp eed w which is g reater than that of the freely
fa llin g c lo ck

w = vx
gT/c

sin h−1( gT/c)
= vx

(
1 + 1

6

g2T 2

c2
+ · · ·

)

with T given in equation (4.10). The proper time of the reunion event as recorded
by this moving clock is τ (w)B = τA

√
1 − w2/c2. Since w is in excess of vx , in

the frame of reference travelling to the right with this moving clock B, the freely
falling clock is not launched vertically: it must instead be launched to the left of
ve r tical ( see to p v iew in fig u r e 4 .5 ) a t a n g le � ∼= − 2v xv  y/3 c 2 ( f o r n o n - r e lativ istic
speeds vx and vy) and, more generally, at an angle

tan � = vx − w

1 − wvx/c2

√
1 − w2/c2

vy
.

These elapsed proper times, τ (vy, vx )F, τA and τ (w)B, and the horizontal location
L of the reunion event from equation (4.11) are observables which must all be
reproduced in the equivalent gravity environment if the SREP is to be fulfilled.

Some of these observables are relevant to the case in which the inertially
moving rod is replaced by a light ray. Its trajectory in the master inertial frame is

x = ct cos φ y = ct sin φ.
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Figure 4.5. Clock trajectories seen in two frames of reference. Freely falling and ground
clocks, marked F, F′, A, B, in gravity are shown from two frames of reference—the lower
viewpoint is at rest with respect to the gravity source and the upper viewpoint moves to the
right at speed w (the source of gravity moves to left at speed w). In the frame in which
gravity’s source is at rest, clock F′ is launched into vertical free fall and ground clock A
waits at rest for the reunion. In the same frame, clock F is on a free-falling trajectory which
moves to the right, and clock B moves on the ground at constant velocity to the right to
meet the return of F to the ground. Proper times at the various reunions of these clocks and
other related observables are calculated in the gravity-free but accelerating ground floor
situations; and fulfilment of the SREP requires that those results must all be reproduced
in each of these two illustrated situations in gravity (the four clock times are shown in the
lower view). This specifies modifications of the gravitational equations of motion when
these equations are stated in the frame moving with respect to the source of the gravity,
including gravitomagnetic terms which are proportional to the velocity of the gravity’s
source.

The time recorded by a clock at rest in the master inertial frame for the reunion of
the light ray with the ground is then

T ′ = 2c

g

2 sin φ

(cos φ)2
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wh ich then d etermines the elapsed p roper time for th e g round clock at reunion
with th e lig h t r a y

τC = c

g
sin h−1

(
2 sin φ

cos2 φ

)
. (4.17)

This proper time is simply obtainable from equation (4.16) by taking the limit of
a free body wh ich travels at th e speed of light. The second observable is the light-
ray launch angle which resu lts in a horizontal lo catio n for th e reunion of light ray
and the ground equal to that for the rod:

tan φ = gL

2 c 2 .

There is, of course, n o elapsed proper time for a ‘clock o n a light ray’.

4.4.1 Moving gravity source

Trajectories of these various clocks and the light ray in the gravity environment
are shown in figure 4 .5. The lower p ictu re gives the scene in the rest frame of th e
gravity source and the at rest ground clocks. The upper picture gives the scene in
the frame of the clock which moves to the right so as to record the reunion of the
freely falling clock launched to the right. When the unusual motion of the freely
falling clock in the upper scene is also required to occur in gravity, additional
gravitomagnetic-like acceleration terms to the freely falling clock’s equation of
motion are required which are in proportion to the motion of the gravity source in
that frame of observation.

Another consequence of performing measurements in the frame moving
with the ground clocks at speed w is a change in the measured local value of
gravitational acceleration. Since this moving clock will experience an elapsed
proper time smaller than that of the ground clocks at rest,

τ (w)B = τA

√
1 − w2/c2 (4.18)

and the vertical speed of the launched freely falling body is enhanced as measured
in this frame (time dilation),

v′
y = 1√

1 − w2/c2
vy

observers accompanying the horizontally moving ground clocks record a local
gravitational acceleration of

g(w) = 1

1 − w2/c2
g ∼= (1 + w2/c2)g.

The SREP’s enforcement of this will require further modifications of the
gravitational equation of motion when expressed in frames in which the source
of gravity is moving.
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A clock launched vertically in the frame which is not horizontally moving
relative to gravity’s source can also be viewed from the rest frame of the ground
clocks which travel to the right. The elapsed proper time for the freely falling
clock in that case is obtained from equation (4.15) with vx = 0

τ (vy, 0)F′ = 2vy

g

1√
1 − v2

y/c2
.

In the frame of reference moving horizontally along the ground at speed w,
this situation is seen as a clock launched into gravitational free fall and moving
to the left, along with another clock also moving to the left along the ground
such that it meets the freely falling clock at its reunion with the ground. A
further gravitomagnetic acceleration term will be required to obtain equivalent
observational outcomes when this situation is considered in gravity.

4.5 Requirements for equivalent predictions in gravity

All the phenomena and situations considered in the preceding sections must
be considered again in an environment of real gravitational acceleration g as
measured on the ground. The outcomes for all the observables previously
obtained by kinematical calculations in gravity-free space must be reproduced
under identical arrangements in the gravity environment if the SREP is valid. To
achieve this, 1/c2 order gravitational corrections to the equations of motion for
freely falling bodies, to the expression for the proper tick rates of clocks in gravity
and to the speed of light function are required [3]. Expressing each of these three
equations in terms of a proper time variable τ which represents the elapsed time
of clocks at rest, the modified rate for clocks in general motion and at general
altitude above the ground is assumed to be

dτ (r, v) = dτ

(
1 − 1

2

v2

c2
+ a1

g · r
c2

)
. (4.19)

The equation of motion for bodies freely falling in the gravity is assumed to be

d2r
dτ 2 = g

(
1 + a2

v2

c2 + a3
g · r
c2 + a5

(ĝ · v)2

c2

)
+ a4

g · vv

c2 (4.20)

with v = dr/dτ . And the light speed function in gravity is assumed to be

c(r) = |dr|
dτ

= c
(

1 + a6
g · r
c2

)
. (4.21)

Values for the numerical coefficients in these three equations, a1 . . . a6, are sought
so that the observables previously obtained kinematically in gravity-free inertial
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space are reproduced in the corresponding situation in gravity. A unique solution
will result.

A freely falling clock is launched with the same initial velocity used
previously—(vx, vy). The horizontal equation of motion from equation (4.20)
is first considered:

d2x

dτ 2
= −a4

g

c2

dy

dτ

dx

dτ
.

Since the right-hand side of this equation is already proportional to 1/c2, the
Newtonian trajectory for the freely falling body

x(τ ) = vxτ y(τ ) = vyτ − 1
2 gτ 2

can be employed in its evaluation. Integrating this horizontal equation of motion,
demanding that the distance given in equation (4.11) is reached at the proper time
given by equation (4.15):

2vxvy

g

1

1 − v2
y/c2

= vxτG +
∫ τG

0
dτ

∫ τ

0

d2x

dτ 2
dτ to order 1/c2

requires
a4 = −2.

The vertical equation of motion from equation (4.20) is now considered:

d2 y

dτ 2
= −g

(
1 + a2

(dy/dτ )2 + (dx/dτ )2

c2
− a3

gy

c2
+ (a5 − 2)

(dy/dτ )2

c2

)
(4.22)

in which the result for a4 has been incorporated. Since the proper time for
the reunion of clock and ground as recorded by the ground clock is given by
equation (4.16) and is independent of the horizontal speed of the body. This result
can only emerge when solving equation (4.22) if

a2 = 0.

The remaining dimensionless coefficients in equation (4.20) are fixed by using
the Newtonian motion on the right-hand side, integrating from the initial vertical
position 0 and speed vy , and requiring both the return of the freely falling clock
to the ground and the reversal of the vertical velocity to −vy to occur at time τA.
This yields

a3 = −1 a5 = 0.

The proper time of the reunion with the ground as recorded by the freely
falling clock is obtained by integrating the clock rate expression given in equation
(4.19). Demanding that the result be equal to the kinematically derived amount
given in equation (4.15) yields the value of the ‘red-shift’ coefficient in equation
(4.19)

a1 = −1.
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It should be noted that this derivation of the gravitational ‘red-shift’ of clock
rates did not employ light-ray propagation between differently located clocks.
Combining these results for the clock rate expression and the equation of motion
expression, their coefficients now determined, the locally measured acceleration
rate for a body instantaneously at rest is found to be dependent on altitude

g(y)local = g
(

1 − gy

c2

)
.

In the limit of small initial elevation angles, light rays move in gravity along
the curves

y(x) = g

2c2
x(xγ − x).

The proper elapsed time of ground clocks for the reunion of the light ray with the
ground has already been determined and is given in equation (4.17). Demanding
this same elapsed proper time in gravity, the light-ray speed function is assumed
and integration over the light trajectory is performed to obtain the total elapsed
time. Corrections to the light trajectory of order 1/c2 need not be considered as
they will generate only 1/c4 order corrections to the result. Therefore,

τC =
∫ (xγ ,0)

(0,0)

√
dx2 + dy2

c(r)
.

This is fulfilled for the coefficient value

a6 = −1

which appears in the light speed function, equation (4.21). Combining this result
with the clock rate expression given by equation (4.19), the locally measured
speed of light is found to be independent of altitude in gravity.

In conclusion: In a frame of reference at rest with respect to a source
of gravity which locally (at the ground) produces a gravitational acceleration
g and speed of light c as measured by clocks at rest on the ground, then the
equivalence of all local phenomena to that which occurs in an accelerated but
force-free environment requires the following 1/c2 order modifications to the local
equations of motion for bodies, clocks and light [4]

d2r
dτ 2

= g
(

1 − g · r
c2

)
− 2

g · vv

c2
(4.23)

dτ (r, v) = dτ

(
1 − 1

2

v2

c2
− g · r

c2

)
(4.24)

c(r) = c
(

1 − g · r
c2

)
. (4.25)
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4.5.1 Geometrical interpretation

This body equation of motion is obtainable from the particle Lagrangian

L = 1

2
v2

(
1 + 1

4

v2

c2

)
+ g · r

(
1 + 1

2

v2

c2

)

which, to the exhibited 1/c2 order, is equivalent to a geometrical least action
principle

δA = 0 = δ

∫ √
gµν dxµ dxν µ, ν = t, x, y, z (4.26)

with the dominant time–time component of the metric tensor being altered from
the Minkowski metric value ηt t = 1, while the spatial values remain unchanged;
ηx x = ηyy = ηzz = −1/c2

gtt = (1 − g · r/c2)2.

The light speed function given by equation (4.25) then follows from the null-
geodesic assumption

gµν dxµ dxν = 0 for light (4.27)

and the clock rate equation (4.24) is the Lagrangian invariant

dτ = √
gµν dxµ dxν.

4.5.2 Moving gravity source

An equation of motion for freely falling bodies which is valid in more general
frames in which the source of the gravity moves would be informative. In this
situation, additional acceleration terms must be considered which are functions
of the gravity source’s velocity vs. By considering the previous phenomena from
a reference frame which moves at constant velocity along the ground, three such
terms can be determined:

δ

(
d2r
dτ 2

)
= 1

c2
(a7 g · vvs + a8v · vs g + a9v

2
s g). (4.28)

Because the source velocity vs is orthogonal to the local gravity direction in these
situations, a number of other possible acceleration terms proportional to g · vs are
not brought into play and so remain undetermined by these SREP arguments.

In the case of the clock originally launched up and to the right, with a ground
clock following along the ground so as to arrive at the reunion of clock with
ground, we recall that in the frame which follows the ground clock, the freely
falling clock was launched not vertically upward but at an angle to the vertical of
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� ∼= − 2v xv y/3 c 2 (to leading o rder in 1/c 2 ) . As illu str a ted in fig u r e 4 .5 , it th e n
moved on a closed trajectory which finished at its starting point on the ground.
Demanding this outcome from the x-component of our body’s equation of motion
with the source of gravity moving to the left, then requires

−vxvy

c2

2vy

g
+ a7

∫ 2vy/g

0
dt

∫ 2vy/g

0

wg

c2 (vy − gt) dt ∼= 0

with w ∼= vx . This requires a7 = 2. And, as previously indicated, the vertical
acceleration in this frame is not g, it is g(w) = g(1 + w2/c2) which requires
a9 = 1.

If the case of the clock vertically launched in the original frame is now
considered in the frame moving to the right at speed w, the vertical speed with
which it was launched is vy(1 − w2/2c2) to lowest order in 1/c2, while the total
proper time for the ground clock travelling to the left to meet the freely falling
clock at reunion with the ground is as given in equation (4.18). Since this moving
clock’s proper time runs at a rate slower than that of the ground clocks at rest in
this frame by the factor

dτ

dτ (w)
=

√
1 − w2/c2 ∼= 1 − 1

2

w2

c2

the vertical acceleration of the freely falling clock must be g(1−w2/c2) to lowest
order in w2. This fixes the final coefficient in equation (4.28) to be a8 = −2.

The entire equation of motion, equation (4.28) plus the contributions from
equation (4.23), is then

d2r
dτ 2 = g

(
1 − g · r

c2 + v2
s

c2

)
− 2

c2 g · vv + 2

c2 v × (vs × g). (4.29)

A moving gravity source also changes the speed of light function. A Lorentz
transformation to the frame travelling to the right at speed w relates the launch
angle of the light ray which will be seen in this frame to the original launch angle

tan φ′ = sin φ
√

1 − w2/c2

cos φ − w/c

or for small angles
φ′ ∼= φ(1 + w/c).

But the maximum height above the ground which the light ray reaches is
unchanged by this transformation and is given approximately by

h ∼= 1

2
φ2

(
dc

cdy

)−1

.
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The gravitomagnetically modified light speed function

c(r) = c
(

1 − g · r
c2

(1 − 2ĉ · vs/c)
)

(4.30)

is required to achieve this equivalent result: ĉ is the unit vector in the direction of
light propagation and again vs is the velocity of the source of gravity.

These SREP results for a moving source are in agreement with what one
obtains by applying a Lorentz transformation to the metric field previously found
in the gravity source’s rest frame. From the transformation rule for a second rank
tensor,

g′
µν =

∑
α

∑
β

∂xα

∂x ′µ
∂xβ

∂x ′ν gαβ

and the lowest-order expression of the Lorentz transformation,

r ∼= r ′ − vst
′

t ∼= t ′ − vs · r ′/c2

a spatial vector of (mixed time–space) metric components is obtained:

g′
i0 = g′

0i
∼= 2g · r(vs)i/c4 components i = x, y, z

which, when inserted into the action principle given by equation (4.26), generates
the new Lagrangian term

δL = −2g · rvs · v/c2. (4.31)

4.6 Periastron precession

Just about any modification from an inverse square central acceleration law causes
the major axis of Keplerian orbits to precess in inertial space. This holds, in
particular, for the modifications to the equation of motion which result from the
SREP as given by equation (4.23). Consider a body which is close to being in a
circular orbit around a central body. Small perturbations are considered from the
mean circular motion so that the time evolution of the eccentric deviations from
circularity can be derived and compared to the mean orbital motion. Starting with
the radial and tangential equations of motion

d2r

dτ 2
= g(r, v) · r̂ + ω2r

d

dτ
(r2ω) = r g(r, v) · t̂

small perturbations are considered about a circular orbit, r → r + x(τ ), ω →
ω + δω(τ). The needed acceleration components from equation (4.23) are

g · r̂ = − g(1 + gx/c2)

g · t̂ = 2gv

c2

dx

dτ
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with v being the horizontal velocity of the mean circular orbit. The linearized
equation for radial perturbation x(τ ) then becomes

d2x

dτ 2
+

(
3ω2 + dg

dr
− 3g2

c2

)
x = 0

with the radial tidal gradient of the solar system’s total acceleration field dg/dr
added, and the relationship g = vω being used to simplify the radial and
tangential 1/c2 order perturbation terms. The resulting radial perturbation is
simple eccentric harmonic motion with arbitrary amplitude and phase determined
by initial conditions. But this eccentric motion’s frequency ωo is specific, and
relative to the orbital frequency, it is shifted by the SREP modifications of the
dynamics to be slightly less than what it will be due solely to the tidal gradient
dg/dr . This increased frequency difference between orbital and eccentric motions
appears in space as an addition to the total precession rate of the orbit’s major axis
in the positive sense of the orbital motion (prograde precession), and of amount

δ(ω − ωo) ∼= 3

2
g2/(ωc2) ∼= 3

2

v2

c2
ω.

Prior to Einstein’s development of his special relativity theory in 1905
and the formulation of his EP beginning in 1907, a century of astronomical
observations had already discovered about a 43 arcsec/century precession rate
for Mercury’s orbit in excess of what could be understood from consideration of
the Newtonian perturbations by the other known planets in the solar system. Half
this anomalous precession is here accounted for from the SREP:(

3

2

v2

c2
ω

)
Mercury

∼= 22.5 arcsec/century. (4.32)

4.6.1 A historical speculation

As early as December 1907, Einstein mentioned in a letter to a friend that, ‘I am
now occupied with a relativistic treatment of the law of gravity, with which I hope
to explain the anomalous secular change in the perihelion of Mercury.’ And he
added in a footnote, ‘Up to now the thing doesn’t appear to want to succeed’ [5].
Had Einstein arrived at the SREP’s prediction, equation (4.32), about this time?
By then he certainly was in a position to extend his EP to a full SREP. Perhaps he
had done so but chose not to publish the consequences of a full special relativistic
generalization of his principle because this perihelion prediction was only half
the known anomaly in Mercury’s orbital motion? Yes, his prediction of light
deflection from the EP was also only half that which would eventually emerge
from his complete gravity theory of 1915/16 but in 1907 neither the full theory’s
prediction for light deflection nor its experimental measurement during the eclipse
of 1919 were available to create a conflict.
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However, continued work toward a complete relativistic theory of gravity
may have been spurred on by such an anomalous early EP-inspired estimate which
produced contributions to Mercury’s perihelion precession rate with magnitude
being a simple fraction of the observed anomaly of 43 arcsec/century. From
several letters from Einstein to colleagues written around the end of 1915, Einstein
mentioned that one of the things which had kept him searching right up until the
end for a better metric tensor theory of gravity was that his ‘old theory’ only
explained half Mercury’s anomalous perihelion precession. And then when he
recalculated this effect in November 1915 using the new vacuum field equations
of his final metric tensor theory of general relativity and did obtain the full
anomaly ‘without any special hypothesis’, he mentioned in another letter that
this produced one of the strongest emotional experiences of his career: ‘for a
few days I was beside myself with joyous excitement’. It appears clear that the
Mercury orbit anomaly played a continuous and key role in Einstein’s search for
a new theory of gravity. Many narratives of this scientific revolution seem to have
minimized this part of the story and the focus on the later confirmation of the
theory with the measurement of the deflection of light during the 1919 eclipse
further overshadowed the perihelion precession phenomenon.

4.7 Summary

Incorporating the special relativity theory more fully into Einstein’s principle of
equivalence between the phenomena in accelerated frames of reference and that
in local gravitational fields has led to the prediction of a number of additional
effects in post-Newtonian gravity. These include geodetic precession of local
inertial frames which follow non-radial, free-falling trajectories through gravity,
precession of Mercury’s perihelion and gravitomagnetic forces between matter
proportional to the velocities of both source matter and acted-upon matter, as well
as gravitomagnetic precession. And the original predictions of Einstein’s EP are,
of course, also predicted—universal reduction of clock rates and both deflection
and slowing of light in gravity.

The SREP predictions do not generally account for the entire physical effects
which are now routinely measured by experiments. Within the general class
of locally Lorentz-invariant, complete metric theories of gravity—all of which
fulfil the SREP—a variety of calculated post-Newtonian gravitational effects
are now listed and expressed in terms of two dimensionless parameters, γ and
β∗ = 2β − 1, which identify and quantify the post-Newtonian features of the
metric theories which go beyond the local physics specified by the Equivalence
Principles.

dτ = dt

(
1 − 1

2

v2

c2
− 1

g · r
c2

)

c(r) = c
(

1 − (1 + γ )
g · r
c2

)
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�geo = (1/2 + γ )
g × v

c2

�Merc = (3/2 + 2γ − β∗/2)
v2

c2
ω

agrav−mag = (2 + 2γ )
v × (g × vs)

c2

MG

MI
= 1 + (1 + γ − 2β∗) 1

2Mc2

∫
ρ(x)ρ(y)
|x − y| d3x d3y.

SREP contributions are shown in bold numbers. These parameterized post-
Newtonian (PPN) expressions for different (albeit theoretically connected)
gravitational effects have been known for decades [8–10]; indeed, it was
my awareness of the contributions to these several phenomena which were
independent of the specifics of the particular metric theory that motivated this
investigation. It is the SREP which dictates these universal contributions to post-
Newtonian gravity.
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Appendix

Beginning with an underlying metric field theory of gravity which is locally
Lorentz-invariant, a 1/c2 order, N-body Lagrangian can generally be derived.
The part of this Lagrangian which is independent of the specifics of the metric
theory and which manifests both local Lorentz invariance and the EP is

LSREP =
∑

i

(
1

2
miv

2
i + 1

8c2 miv
4
i

)

+ G

2

∑
i, j

mi m j

ri j

(
1 − 1

2c2
(vi · v j + vi · r̂i j r̂i j · v j )

)

+ G

4c2

∑
i, j

mi m j

ri j
(vi − v j )

2

with the first line by itself being Lorentz-invariant to 1/c2 order but the additional
Lorentz-invariant term on the second line being also needed in order to fulfil the
EP. Focusing on one of the N-bodies in the presence of N − 1 other quasi-static
sources of gravity seen by the selected body, one can expand this Lagrangian
about a chosen origin, rescale the time variable into the proper time variable
at this origin and then reproduce the SREP-derived equation of motion given
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by equation (4.23). Giving the source bodies motions vs, the SREP-derived
gravitomagnetic equation of motion corrections found in equation (4.29) can also
be obtained.

But there is additional 1/c2 order gravitational physics beyond the SREP. It
results from two Lagrangian terms

Lγ = γ
G

2c2

∑
i, j

mi m j

ri j
(vi − v j )

2

Lβ∗ = − β∗ G2

2c2

∑
i, j,k

mi m j mk

ri j rik

with the indices i , j , k each being summed over the N bodies [11]. The two new
coupling strength parameters have special values in general relativity, γGR = 1
and β∗

GR = 1 (β = (1+β∗)/2 is the more traditional PPN, Eddington coefficient)
[7] but they individually have different values in scalar–tensor metric theories, for
example. In addition to contributing to additional gravitomagnetic interaction, the
Lagrangian term Lγ produces a global non-Euclidean geometry for the arena of
physical events and objects. But locally this deviation from the Euclidean nature
of space can be delayed. At a chosen locality r0, a sequence of spatial coordinate
transformations involving first a rescaling of the spatial coordinates

x′ = (1 + γ U(r0)/c2)x

with U(r0) being the Newtonian potential at r0 of the gravitational sources, and
x = r − r0, and then the nonlinear warping of the coordinates

x′ = ρ + 1

2c2
γ gρ2 − 1

c2
γ g · ρρ

the locality only experiences the onset of non-Euclidean spatial effects at the
quadratic order in laboratory size. The nonlinear Lagrangian term Lβ∗ produces
three-body gravitational interactions and it also produces modifications to the
gravitational potential between two bodies whose strength is proportional to the
square of one mass or the other and depends on the inverse square of body
separation. Neither of these two Lagrangian terms can be inferred by SREP
arguments: a full field theory of gravity is required for their specification.
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speed reduction near gravitating bodies as a result of the curvature of space
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Chapter 5

Lunar laser ranging: a comprehensive
probe of post-Newtonian gravity

Kenneth Nordtvedt
Northwest Analysis, 118 Sourdough Ridge, Bozeman, MT 59715,
USA

5.1 Introduction

The precise fit of the lunar laser ranging (LLR) data to theory yields a number
of the most exacting tests of Einstein’s field theory of gravity, general relativity,
because almost any alternative theory of gravity predicts a number of changes
(from that produced by general relativity) in the lunar orbit which would be
readily detected in the LLR data. Some of the most interesting and fundamental
of such theory-dependent effects and which are particularly well measured by
LLR include (1) a difference in the free-fall rate of the Earth and Moon toward
the Sun due to gravity theory’s nonlinear structure acting on the gravitational
binding energy within the Earth, (2) a time variation in Newton’s gravitational
coupling parameter, G → G(t), related to the expansion rate of the universe
and (3) precession of the local inertial frame (relative to distant inertial frames)
because of the Earth–Moon system’s motion through the Sun’s gravity.

Measurements of the round-trip travel times of laser pulses between Earth
stations and sites on the lunar surface have been made on a frequent basis ever
since the Apollo 11 astronauts placed the first passive laser reflector on the Moon
in 1969. Today about 15 000 such range measurements are archived and available
for use by analysis groups wishing to fit the data to theoretical models for the
general relativistic gravitational dynamics of the relevant bodies, the speed of light
function in the solar system, tidal distortions of Earth and Moon, atmospheric
corrections to light propagation, etc. An individual range measurement today has
a precision of about a centimetre (one-way) but a new generation of observing
program plans to improve this range measurement precision down to a millimetre.
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Because of the large number o f range measurements, some o f the key length
p a r a m e ter s wh ich d escr ib e th e lu n a r o r b it ar e a lr ead y e stim ated with p r ecisio n
o f a f ew m illim etr e s, an d key lu n a r m o tio n f r e q u e n c ies to f r actio n a l p r ecisio n s o f
a few parts in 1012 .

Because both the Earth’s m ass and that of the Moon are sufficiently larg e,
th e o rbits of th ese bodies can be modelled as single o rbital ‘arcs’ extending
over three decades through time. The complete m odel u sed to fit the many
range measurements contains in ex cess o f a hundred parameters, Pm , which are
o p tim ally ad ju sted f r o m th e ir n o m in al m o d e l valu e s P( o)

m by amounts δ Pm =
Pm − P( o)

m determin ed in a weighted least-squares fit type procedure:

Minimize
N∑

i, j=1

Wij

M∑
m, n=1

[ f (m)iδ Pm − r i ][  f (n) jδ Pn − r j ]

with th e N range measurements being identified by the labels i and j and the M
model p arameters b eing identified by the labels m and n . Wij  are the weightings
given to each measurement ( pair) and are u su ally taken to b e d iagonal in i j
and inversely proportional to the square of in ferred measurement errors; the
residuals ri are the diff erences between observed and calculated r ange values,
ri = R obs(ti ) − R cal c(ti ); and th e remaining functions f (m)i are the parameter
p a rtia ls wh ich g ive th e sen sitiv ity o f th e m o d e lled ( calcu lated ) r a n g e to ch an g e in
each model p arameter value

f (m)i = ∂ R cal c(ti )

∂ Pm

evalu a ted a t th e tim e ti of the i th range measurement.
Among the very many model parameters, the information needed for testing

relativistic gravity theory is concentrated in only a handful of orbital features. The
needed orbital parameters are connected with four key oscillatory contributions
to the lunar motion, the eccentric, evective, and variational motions and the
p a ra lla ctic in eq u a lity , wh ich are illu strated in fig u r e 5 .1 . T h e eccen tric mo tio n
produces an oscillatory range contribution proportional to cos(A), A being the
anomalistic (eccentric) phase and is a natural and undriven perturbation of circular
motion. The variation is driven by the Sun’s leading order quadrupolar tidal field
and produces a range contribution proportional to cos(2D), D being the synodic
phase from the new moon. The parallactic inequality is driven by the Sun’s next-
order octupolar tidal field and its range perturbation cos(D) has a monthly period.
The evection is a hybrid range perturbation proportional to the eccentric motion
as modified by the variation and having a time dependence cos(2D − A). The
eccentric and evective motions, which alter the times of eclipses, were discovered
by the ancients: the variation and parallactic inequalities, which do not alter the
times of eclipses, were only found during and after the era of Newton.

The amplitude of the parallactic inequality, LPI, is unusually sensitive to
any difference in the Sun’s acceleration rate of the Earth and Moon [2]. The
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Figure 5.1. Lunar orbit’s four main perturbations. Four lunar orbit perturbations from a
nominal circular orbit (dotted) are shown. They produce oscillatory Earth–Moon range
terms: the eccentric oscillation ∼ cos(A), the variation oscillation ∼ cos(2D), the
parallactic inequality oscillation ∼ cos(D), and the evective oscillation ∼ cos(2D − A),
with respective amplitudes indicated. Key tests of general relativity are achieved from
precise measurements of amplitudes or phase rates of these perturbations. Measurement of
the amplitude of the parallactic inequality determines whether Earth and Moon fall toward
the Sun at same rate. Measurements of the synodic phase D and anomalistic (eccentric)
phase A rates and rate of change of these rates determine the deSitter precession of the
lunar orbit and time rate of change of Newton’s G.

frequency of the eccentric motion, the anomalistic frequency Ȧ, when compared
to other lunar frequencies determines the precession rate of the Moon’s perigee.
This rapid precession, which completely rotates the orbit’s major axis in about
8.9 yr, is primarily driven by the Sun’s tidal acceleration but there is a leading
order relativistic contribution to this precession rate interpreted as an actual
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r o tatio n o f th e lo cal in er tial f r a m e , th e d e S itter p recessio n , r esu ltin g f r o m m o tio n
th rough th e Sun’s field o f g ravity. From measurement o f the time rates of
change of the Moon’s anomalistic and synodic frequencies, Ä and D̈ , a rather
clean measurement can be made of a time rate o f change of Newton’s couplin g
parameter G . The Earth–Moon range model can be expressed in terms of th ese
primary contributions

r(t) = L0 − L ecc cos( A)− L ev c cos(2 D − A)− L va r cos(2 D)− L PI cos( D)+ · · ·

with phases advancing as A = Ao + Ȧ(t − to) + Ä(t − to)2/2 + · · ·  an d sim ilar ly
for the synodic phase D . The LLR measurement o f LPI , Ȧ , Ḋ , Ä , and  D̈ forms
th e foundatio n for th e g ravity th eory tests.

5.2 Dynamical equations for bodies, light and clocks

LLR comprehensively tests the 1/c 2 order, grav itational N -body equations of
motion which analysis groups integrate to produce orbits for the Earth, Moon
and other relevant solar system bodies. The Sun–Earth–Moon system dynamics
is sy mbolically illustrated in figure 5 .2 , with the r est o f the so lar system bodies
sufficiently considered at the Newtonian level of detail. The Earth moves with
velocity V and acceleration A with respect to the Sun, while the Moon is moving
at velocity V + u and acceleration A + a. (If preferred frame effects were to
be considered for cases when gravity is not locally Lorentz-invariant, the Sun’s
cosmic velocity W also becomes involved [4].) There are a variety of post-
Newtonian forces acting on the Earth and Moon through the Sun, each other
and on themselves (self-forces) which are dependent on these general motions.
Included in these are nonlinear gravitational forces for which each mass element
of the Earth and Moon experiences forces due to the interactive effect of the
Sun’s gravity with the other mass elements of the same body or of the other
neighbouring body. The accelerations of individual mass elements of Earth also
induce accelerations on the other mass elements of Earth and similarly with the
Moon. Acceleration of the Earth induces an acceleration of the Moon. Altogether,
these 1/c2 order accelerations produce a rich assortment of modifications of the
Earth–Moon range which LLR can measure.

The N-body equation of motion in metric gravity has been formulated
in the literature for the completely general case [16]. Not observing any
violations of local Lorentz invariance or breakdown of conservation laws in solar
system gravity, I here give special consideration to the fully conservative, locally
Lorentz-invariant, Lagrangian-based gravitational equation of motion (plus the
cosmological variation of Newton’s G). For N bodies in general motion and
configuration and valid for a broad class of plausible metric theories of gravity,
scalar–tensor theories in particular, the order 1/c2 equations of motion for these
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Figure 5.2. Velocities and accelerations of Sun, Earth and Moon. When formulating the
Earth–Moon dynamics in the solar system barycentric frame, there are post-Newtonian
force terms acting between Sun, Earth and Moon which depend on either the velocity
or acceleration vectors of both the Earth and Moon. Body self-accelerations also result
from the inductive inertial forces acting between the mutually accelerating mass elements
(i, j ) within each of these bodies. The intrinsic nonlinearity of gravity also produces net
external forces on these bodies proportional not only to the presence of other bodies,
but also to their internal gravitational binding energies. The motional, accelerative and
nonlinear contributions to the three-body system’s dynamics, taken collectively, make LLR
a comprehensive probe of the post-Newtonian dynamics of metric gravity in the general
case. If the dynamics is not locally Lorentz invariant, then the velocity W of the solar
system through the cosmos leads to novel forces and resulting observable effects in LLR
proportional to W (or its square) but such effects have not been seen.

N bodies take the form

(A) ai =
(

1 + Ġ

G
(t − to)

) (
M(G)

M(I )

)
i

gi

(B) − β∗ ∑
j �=i

( ∑
k �=i

µk

rik
+

∑
k �= j

µk

r jk

)
gi j

(C) + (2γ + 2)
∑
j �=i

vi × (v j × gi j )

(D) + 1
2

∑
j �=i

[(2γ + 1)v2
i + (2γ + 2)v2

j − 3(v j · r̂i j )
2]gi j
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− (4γ + 2)[gi j · v j (v j − vi ) + gi j · vivi ]
(E) + 1

2

∑
j �=i

µ j

ri j
[(4γ + 3)a j + a j · r̂i j r̂i j ]

(F) − 1
2v2

i ai − ai · vivi − (2γ + 1)
∑
j �=i

µ j

ri j
ai (5.1)

with vi = dr i/dt , ai = dvi/dt , ri j = |r i − r j | and i , j , k = 1, . . . , N . The
speed of light factor 1/c2 has been set equal to one in lines B to F to simplify
presentation. The body gravitational mass strengths µi = GM(G)i are indicated
along with the Newtonian acceleration vectors

gi j = µ j

r3
i j

r j i and gi =
∑
j �=i

gi j

γ and β (with β∗ = 2β − 1) are two Eddington parameters which quantify
deviations in metric gravity theory from Einstein’s pure tensor theory in which
both these parameters equal one. Several lines of this total equation of motion
warrant individual descriptions and brief discussions.

(1) Line A. If the metric theory Eddington parameters γ and β differ from their
general relativistic values γGR = βGR = 1, application of the equation of
motion relativistic corrections from lines B through F to a body’s internal
gravity finds that the gravitational to inertial mass ratio of a celestial body
depends on its gravitational self-energy content [1]:

M(G)

M(I )
= 1 − (4β − 3 − γ )

G

2Mc2

∫
ρ(x)ρ(y)
|x − y| d3x d3y + O(1/c4). (5.2)

Another way to view this ratio is in terms of a spatially varying gravitational
coupling parameter G

G(r, t) ∼= G∞[1 − (4β − 3 − γ )U(r, t)/c2]
in which a body with a significant part of its mass–energy coming from its
gravitational binding energy experiences the additional acceleration

δai ∼= −∂ ln Mi

∂G
c2∇G

with the leading gravitational energy contribution to body mass being the
Newtonian contribution

∂M

∂ ln G
= − G

2c2

∫
ρ(r)ρ(r ′)
|r − r ′| d3r d3r ′.

When cosmological equations from a metric theory are considered, Newton’s
coupling parameter G will also generally be found to vary in time in

Copyright © 2005 IOP Publishing Ltd.



Dynamical equations for bodies, light and clocks 103

proportion to the Hubble expansion rate of the universe

Ġ

G
∼ (4β − 3 − γ )H. (5.3)

The presently most precise way to measure any deviation of β from its
general relativistic value is through measurement of the M(G)/M(I ) ratio
of Earth using LLR data.

(2) Line B. Gravity couples to itself, thereby producing nonlinear gravitational
forces among and between bodies.

(3) Line C . Just as pairs of moving charges generate magnetic forces between
themselves in proportion to the velocities of both charges, pairs of moving
masses generate gravitomagnetic forces between themselves. This force
acts between the mutually moving Earth and Moon and contributes to the
necessary Lorentz contraction of the lunar orbit as viewed from the solar
system barycenter.

(4) Line D. Masses in motion both produce and couple to gravitational
fields differently than masses at rest. The package of velocity-dependent
acceleration terms in this line plus line C lead to the local Lorentz invariance
of gravity. Any further modifications of this package (beyond the γ -
dependence) will lead to additional terms in the equation of motion with one
or two powers of body velocities being replaced by the velocity W of the
solar system relative to the universe preferred frame. A variety of preferred
frame effects which would then result have been empirically ruled out in
LLR and other solar system observations [5].

(5) Line E . Accelerating masses generate inductive gravitational forces on other
proximite masses.

(6) Line F . The inertia of a mass is altered by its motion and by its proximity
to other masses. The combination of terms from this line plus line E are
necessary in order that a body’s gravitational self-energy contributes to its
total inertial mass in accord with special relativity’s prescription M = E/c2.
This modification of inertia is part of the M(G)/M(I ) calculation for a
celestial body.

LLR measures the round-trip time of the propagation of light between two
separate body trajectories, and this measurement is made by a specific clock
moving on a particular trajectory. So in the solar system barycentric and spatially
isotropic coordinates employed to express the body equations of motion given by
equation (5.1), there are also requirements for the post-Newtonian modifications
to the light coordinate speed function and to the clock rates, these respectively
being

c(r, t) ∼= c∞[1 − (1 + γ )U(r, t)/c2] (5.4)

and
dτ ∼= dt[1 − v2/2c2 − U(r, t)/c2] (5.5)
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in which U(r) is the total Newtonian gravity potential function due to solar system
bodies

U(r, t) =
∑

j

∫
Gρ(r ′(t)) j

|r − r ′(t)| d3r ′. (5.6)

Because the Earth moves in the solar system barycentric frame and it rotates at
rate ν, there must be two corrections applied to an Earth surface location a: first
there is the Lorentz contraction of the extended body

δa ∼= −a · V V/2c2

and because of special relativity’s non-absolute nature of time simultaneity there
is a further displacement of the rotating Earth surface locations

δa ∼= V · a(ν × a)/c2.

These light and clock equations and special relativistic body distortion effects
play only supportive (but necessary) roles in fitting LLR data: the main science
emerges from the body equations of motion as given by equation (5.1).

5.3 LLR’s key science-related range signals

Associated with each feature of gravitational theory which is tested by LLR,
there are specific range signals in the LLR data whose measurements yield the
information about theory. Several of these signals are here described.

5.3.1 Violation of the universality of free-fall

Because celestial bodies have gravitational self-energies (internal gravitational
binding energies), they will generally possess gravitational to inertial mass ratios
which differ from each other as indicated in line A of equation (5.1) and given
by equation (5.2). But there are other ways in which bodies may accelerate at
different rates toward other bodies. Within the paradigm that forces between
objects are carried by a field, an additional long-range interaction in physical law
generates a force between bodies i and j which will typically have the static limit
form

f i = Ki∇i
K j

ri j
e−µri j . (5.7)

The bodies’ coupling strengths Ki and K j , except in special cases such as metric
scalar–tensor gravity in which Ki ∼ Mi , will be attributes of the bodies which
are different than total mass–energy (non-metric coupling); and the dependence
on distance of this force will be either inverse square if the field is massless or
Yukawa-like if the underlying field transmitting this force between bodies has
mass. Such a new force will produce a difference in the Sun’s acceleration of the
Earth and Moon, because the latter two bodies are of different compositions—the
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Earth h as a substantial iron core while th e Moon is composed of low- Z m a n tle-
like m aterials. T he fractional d ifference in acceleration r ates of Earth and Moon
amounts to

|δaE M/g S| = KS

GMS

(
KM

MM
− KE

ME

)
(1 + µ R)e−µ R

and it will supplement any diff erence in the accelerations resu lting from the
possible anomalies in the bodies’ g ravitational to inertial mass ratio s due to
grav itational self-energ ies. LLR has b ecome a sufficiently precise tool for
measuring |δaEM| and it n ow competes favo rably with ground-based laboratory
measurements looking for the composition-dependence o f free-fall rates. LLR
is also th e p remier probe for measurin g a body’s M( G)/  M( I ) r a tio as g ive n b y
equatio n (5.2).

I f th e E ar th an d M o o n fa ll towa r d th e Sun at diff erent r ates due to either
of the m echanisms discussed h ere, then th e lunar o rbit is polarized along th e
so lar d ir ectio n . Detailed calcu latio n o f th is p o lar izatio n r eveals a n in ter estin g
interactive f eedback mechanism which acts b etween this cos( D) polarizatio n and
th e c o s(2 D) Newto n ian so lar tid e p er tu r b atio n o f th e lu n a r o r b it, th e va ria tio n ).
The result is an amplificatio n o f the synodic p ertu rbatio n

δ r(t)ME = 
3

2

�

ω 
RF(�/ω)δ  ME cos D (5.8)

∼= 2. 9 × 1012δ ME cos D cm

with δEM = |(a E − a M)/g S| , R is d istan ce to th e Su n , � and ω are the sidereal
frequencies o f solar and lunar motio n and D is th e lunar phase measured from
new moon. The feedback amplificatio n factor for the lunar o rbit is already
F(�/ω) ∼= 1. 7 5 : it g r ows f u r th er with larg er o r b its with an in ter e stin g r eso n a n c e
diverg ence for an o rbit about twice the size as th at of th e Moon [14, 15].
Co mputer in tegratio n o f the complete equatio n (5.1) for the Sun–Earth–Moon
sy stem dynamics confirms these analytica lly estimated polariza tion sensitivities.

The m ost r ecent fits of the LLR data find n o anomalies in the cos( D)

amplitude to a p recision of 4 mm, so from equatio n (5.8) δME is constrained to
b e less th an 1. 3 × 10−13 . N eg lectin g a ny p o ssib le c o m p o sitio n d ep en d e n c e a n d ,
using equation (5.2) with an estimate for the fractional gravitational self-energy
of the Earth being 4.5 × 10−10, the following constraint on a combination of the
two Eddington parameters is

|4β − 3 − γ | ≤ 4 × 10−4. (5.9)

If metric gravity is a combination of scalar and tensor interactions, the small size
of this constraint is an approximate measure of the scalar interaction strength
compared to the dominant tensor interaction. One scenario which could explain
to d a y ’s weak n e ss o f th e scalar in ter actio n is illu str a ted in fig u r e 5 .3 . Scalar– ten so r
metric gravity involves one coupling function V (φ): the slope of this function
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gives the strength of the scalar interaction and, in combination with the function’s
curvature, also determines gravity’s 1/c2 order nonlinearity. Near an extremum
of V (φ), the Eddington parameters are given by simple properties of the coupling
function:

1 − γ ∼= 1

2

(
d ln V (φ)

dφ

)2

(5.10)

β − 1 ∼= 1 − γ

8

d2 ln V (φ)

dφ2 . (5.11)

As the universe expands, the dynamical equations for the background scalar field
will drive the scalar to a minimum of the coupling function, if it exists, and
where γ and β take their general relativistic values. Scalar gravity turns itself off
naturally if an ‘attractor’ exists in its coupling function V (φ). But that process,
being dynamical, should not be entirely complete today, and the small remnant
of the scalar interaction may still be detectable by sufficiently precise testing of
relativistic gravity using LLR and other experiments [8, 9].

The LLR result can also place limits on the spatial gradient of the fine
structure constant, α = e2/�c, in the proximity of the Sun. If α is a function
of a scalar field whose source includes ordinary matter, a spatial gradient of α

near bodies should exist and composition-dependentaccelerations of other objects
toward this body should occur:

δai = −∂ ln Mi

∂ ln α
c2 ∇α

α
.

The dominant electromagnetic contribution to the mass–energy of different
elements is due to the electrostatic energy among the Z nuclear protons. This
energy fractionally varies by an order of magnitude (from a few parts in 104 to a
few parts in 103) as one proceeds through the periodic table from low-Z to high-Z
elements. For the Earth with its iron core and the Moon composed almost entirely
of mantle-like materials, one can conclude from the LLR constraint on δME that
any gradient of α due to and toward the Sun is quite small compared to the Sun’s
gravitational field gS:

c2|∇ ln α|
|gS| ≤ 4 × 10−10.

This should be compared with the best constraints on the time variation of α,
which, in units of the Hubble expansion rate, are substantially weaker:

H
α̇

α
≤ 10−5.

This suggests that, unless there are unusual sources for the scalar field which
controls the value of α, e.g. sources which are present in an average cosmological
context but which do not concentrate in ordinary matter or other special situations,
then today’s LLR constraint on the spatial gradient of α is the significant present
measure of the constancy of α.
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Figure 5.3. Typi cal cosmol ogi cal dynami cs of a backgr ound scal ar fi e l d i s show n i f t hat
field’s coupling function V (φ)  has a n a t t r act i ng poi nt φo . T he st r engt h of t he scal ar
i nt e r act i on’s c oupl i ng t o m at t e r, pr opor t i onal t o t he der iva t ive of t he c oupl i ng f unct i on,
weakens as t he at t r act i ng poi nt i s approached: s o i n a scal ar–t ensor m et ri c t heory, for
exampl e, t he E ddi ngt on par a met e r s γ and β bot h a ppr oach t he pur e t ensor gr avi t y va l ues
of one.

5.3.2 Geodetic precession of the local inertial frame

Because the Earth and Moon travel at diff erent velocities through the Sun’s
grav itational field, terms from lin es D and F o f equatio n (5.1) are p resent wh ich
accelerate the Moon relative to Earth. A particularly interesting part of the relative
acceleration is proportional to both V and u and the Sun’s acceleration with, as
shown in figure 5.2, V b e in g th e ve lo city o f th e E ar th r e lative to th e Su n , an d u th e
velocity of the Moon relative to Earth. These terms form deSitter’s Coriollis-like
acceleration

δaM = 2�dS × u (5.12)

with

�dS = 2γ + 1

2

GMs

c2 R3
R × V (5.13)

and its geometrical interpretation is the local precession of the inertial frame at
rate �dS which amounts to about 19.2 mas yr−1. The effect of this perturbing
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acceleration on the orbit is primarily an additional rate of perigee precession
with respect to distant inertial space. This is measured by comparing the Moon’s
anomalistic frequency Ȧ (rate of eccentric motion) with its synodic frequency Ḋ
(rate of monthly phase) and with the latter converted into lunar sidereal frequency
ω (orbital rate) by adding to Ḋ the annual rate � which is provided by results from
other solar system experiments. Sidereal minus anomalistic frequency of lunar
motion includes deSitter’s precessional rate as a supplement to the Newtonian
tidal contributions to perigee precession. These lunar frequencies are measured
from range signal perturbations whose size grows linearly in time. The Moon’s
range from Earth includes several dominant oscillatory contributions:

δrME = Lecc cos(A) + Lvar cos(2D) + Levc cos(2D − A) + · · ·
with Lecc being the amplitude of eccentric motion, Lvar the amplitude of solar
tidal perturbation called the variation and Levc being the amplitude of the hybrid
evection perturbation due to both the solar tidal force and the eccentric motion of
the Moon. The least-squares fit of the LLR data, which yields the best estimates
for the two key lunar frequencies, will then involve the parameter ‘partials’:

∂δrME

∂ Ȧ
= − t (Lecc sin(A) − Levc sin(2D − A))

∂δrME

∂ Ḋ
= − 2t (Lvar sin(2D) + Levc sin(2D − A))

The precision of the measurement of the deSitter precession grows particularly
with the total time of the LLR experiment, not only because of the growing
quantity and quality of the accumulated range measurements but also because of
the linear growth in signal sensitivity. The most recent fit of the LLR data confirms
the presence of the geodetic precession with precision of 0.07 mas yr−1 [10].

5.3.3 Time evolution of gravity’s coupling strength G

The evolution of Newton’s coupling parameter G over time results in proportional
evolutions for both the radial size and frequencies of the lunar motion. Slightly
different orbital changes occur when a torque (indicated by L̇) acts on the orbit:

ṙ

r
= − Ġ

G
+ 2

L̇

L
ω̇n

ωn
= 2

Ġ

G
− 3

L̇

L
.

During the earlier years of the LLR experiment, the mean orbital radius signal

δr(t)ME =
(

2
L̇

L
− Ġ

G

)
r(t − t0)
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was used to measure Ġ. However, this involved estimating and subtracting a
contribution to ṙ which results from the orbital torque exerted on the Moon by
the ocean tidal bulges on Earth which, because of friction, lag in angle from
the direction toward the Moon. The inclination and 18.6 yr precession of the
lunar orbit’s plane result in a modulation of the tidal contribution to ṙ which
helps to separate the two perturbations after sufficient years of data have been
accumulated. But the data set produced by LLR has, in recent years, become
sufficiently extended in time so that the range signals associated with frequency
shifts, which grow quadratically in time, are becoming dominant in the fit for Ġ.
Recall that the two lunar phases can be expanded in terms of the initial phase, rate
and acceleration:

D(t) = D + Ḋ(t − to) + 1
2 D̈(t − to)

2 + · · · (5.14)

A(t) = A + Ȧ(t − to) + 1
2 Ä(t − to)

2 + · · · . (5.15)

The synodic frequency is, by definition, equal to the difference in the lunar
sidereal rate and the solar sidereal rate around the Earth,

Ḋ = ω − �

while the Moon’s anomalistic rate is derivable from the underlying equation of
motion and can be expressed in the form

Ȧ = ω − 3

4

�2

ω
− 225

32

�3

ω2
− · · · − (γ + 1/2)

GM

c2 R
� + · · ·

which consists of the classical Newtonian expression plus relativistic
modifications, with the dominant geodetic precession contribution shown. From
these two expressions, the solar sidereal rate and its acceleration can then be
expressed as follows

� = Ȧ − Ḋ + 3

4

( Ȧ − Ḋ)2

Ȧ
+ · · ·

�̇ = Ä − D̈ + · · · .
While the lunar phases A and D suffer accelerations due to any tidal torques
acting between Earth and Moon, the solar rate � is not affected by the tidal
torques. Acceleration of this solar rate is, therefore, a rather pure measure of
a time variation in G. Noting from equations (5.14) and (5.15) that the partials
for Ä and D̈ will grow in amplitude quadratic in time

∂ Rcalc

∂ Ä
= 1

2
t2(Lecc cos(A) − Levc cos(2D − A)) (5.16)

∂ Rcalc

∂ D̈
= t2(Lvar cos(2D) + Levc cos(2D − A)) (5.17)
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it follows that the formal error in measuring Ġ decreases as the inverse square
of the time span T of LLR observations. For a uniform time distribution of
observations, one obtains with

Ġ

G
= 1

2

�̇

�(
δĠ

G

)
RMS

=
√

360

N

1

�T 2

σ√
4L2

var + 3L2
evc

with σ being the rms size of individual range measurement errors and N the total
number of measurements spread over the time T . A recent fit of almost 30 yr of
LLR data yields the following excellent measurement constraint [10]:

Ġ

G
∼= (0 ± 1.1) × 10−12 yr−1. (5.18)

This amounts to about 1/60 of the observed Hubble expansion rate of the universe.
With the precision of this measurement now growing quadratically in time, LLR
should continue indefinitely to be at the cutting edge in the measuring of Ġ.

5.4 An additional Yukawa interaction?

When the supplementary interaction given by equation (5.7) is of a Yukawa
nature, µ �= 0, it contributes to the precession of the periastron for a near-circular
orbit of radius r by an amount

δ(ω − ωo)

ω
= 1

2

Ki K j

GMi M j
(µr)2 exp(−µr)

with ω and ωo being the orbit’s sidereal and eccentric frequencies, respectively.
This perturbation of the precession rate also occurs if the Yukawa force is metric,
Ki ∼ Mi , or non-metric. With the Moon’s perigee precession rate measured to a
precision of 0.07 mas yr−1 and showing no anomaly, then for Yukawa ranges in
the vicinity of that for the maximum sensitivity of lunar perturbation, µr = 2, the
strength of the Yukawa force is decisively constrained

|KE KM|
GME MM

≤ 5 × 10−12
(

4

(µr)2 exp(µr − 2)

)
.

5.5 Gravitomagnetism

Line C of the complete N-body gravitational equation of motion given by
equation (5.1) indicates a post-Newtonian gravitational force proportional to the
velocities of both bodies in the interaction and, in analogy with electromagnetic
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theory, it h as been called the gravito magnetic in ter actio n . Fr o m lin e C o f
equation ( 5.1), this acceleration is

δai = (2 + 2γ )
∑
j �=i

Gm j

c 2 r 3i j

(r i j v i · v  j − r i j  · v  iv  j ).

It often h as been claimed that the presence of grav ito magnetism with in th e total
grav itational interactio n h as not been experimentally confirmed and measured.
I n d eed , d iff e r e n t ex p e r im e n ts h ave b een d eve lo p e d ex p licitly to o b ser ve th e
eff ects o f th is h isto r ically in ter e stin g p r e d ictio n o f g en er al r e lativ ity. Bu t th is
grav itomagnetic acceleration already p la ys a large role in producing the fin al
sh ap e o f th e lu n a r o r b it, alb e it in co n ju n c tio n w ith th e r est o f th e to tal e q u a tio n
of motion: th e p recision fit of th e LLR data indicates th at grav ito magnetism’s
presence and specific strength in the equatio n o f motio n can hardly be in doubt.
Because both the Earth and Moon are m ov ing in the so lar system b arycentric
frame—the frame in which the dynamical equations are formulated and then
integrated into orbits—a gravitomagnetic interaction exists between these two
bodies, the Earth h av in g velocity V (t) and the Moon’s b eing V (t)+ u(t), as seen
in fig u r e 5 .2 . A s a r e su lt o f th ese m u tu a l m o tio n s, p er tu r b atio n s to th e E ar th –
Moon range from the gravitomagnetic acceleration are proportional to both V 2

and V u:

δr(t) ∼= Gme

r2

(
− 4

3ω2

V 2

c2 cos(2D) + 2

ω�

V u

c2 F(�/ω) cos(D)

)

∼= − 530 cos(2D) + 525 cos(D) cm. (5.19)

As previously discussed, the amplitudes of the lunar motion at both these
periods (monthly and semi-monthly) are determined to better than half a
centimetre precision in the total orbital fit to the LLR data. It would be
impossible to understand this fit of the LLR data without the participation of the
gravitomagnetic interaction in the underlying model and with a strength very close
to that provided by general relativity, γ = 1. As in electromagnetic theory, the
velocity-dependent force terms in lines C and D of equation (5.1) can be changed
individually by formulating the dynamics in different frames of reference but the
very ability to reformulate the equations of motion in different frames without
introducing new frame-dependent terms depends on the local Lorentz invariance
(LLI) of gravity. It is the entire package of velocity-dependent, post-Newtonian
terms which includes the gravitomagnetic terms, lines C plus D of equation (5.1)
that produces the LLI: the Eddington parameter γ represents the only freedom
in the structure of this LLI package. Our confidence in the exhibited structure
of this total collection of velocity-dependent terms is established in proportion to
the precision with which the various preferred frame, LLI-violating effects in the
solar system proportional to W 2, W V and Wu have been found to be absent [5].
LLR has been one of the main contributors in establishing gravity’s LLI through
null measurements of several W -dependent effects [4, 6, 7, 18].
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5.6 Inductive inertial forces

Inductive forces are shown on lin e E of equatio n (5.1): in such forces, the
acceleration o f one mass element induces an acceleration o f another p roximite
mass element ( e.g. i and j in figure 5 .2). From lin e E of equatio n (5.1), we h ave

δai =
∑
j �=i

Gm j

2c2ri j
((4γ + 3)a j + a j · r̂i j r̂i j ). (5.20)

These accelerations play a key part in altering the inertial masses of the Earth and
Moon because of their internal gravitational binding energies: either the absence
or an anomalous strength of these inductive forces would translate directly into
differences between the acceleration rates of these whole bodies toward the Sun.
A polarization of the Moon’s orbit in the solar direction, as previously discussed,
would result. The forces, equation (5.20), acting between the mass elements of
Earth, for example, by themselves would lead to an anomalous polarization of the
lunar orbit of very large magnitude:

δr(t) ∼= 130 cos(D) m. (5.21)

Only when these inductive forces are combined with the other post-Newtonian
inertial forces shown on line F of equation (5.1) does the total inertial self-force
of a body become

δ f = − 1

c2

(
1

2

∑
i

miv
2
i − G

2

∑
i, j

mi m j

ri j

)
a

− 1

c2

[∑
i

mivivi − G

2

∑
i, j

mi m j

r3
i j

r i j r i j

]
· a.

The first line of this total self-force is now the expected inertial force due to the
internal kinetic energy and gravitational binding energy within the body. The
second line represents contributions to the body’s internal virial which, when
totalled over all internal force fields, vanishes for a body in internal equilibrium
and experiencing negligible external tidal-like forces. These self-forces of a body
are an integral part of the determination of the total gravitational to inertial mass
ratio of bodies discussed previously, and in general relativity, they are cancelled
by the equal contributions of internal energies to a body’s gravitational mass.
They were explicitly discussed here in order to show the large size of such
inductive force contributions which must necessarily be taken into account in the
fit of theory to the LLR data.
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6.1 Introduction

In the past few years, cosmology has experienced enormous progress. Our
understanding of the physics of the early Universe, its evolution and current large-
scale structure, now lies on firmer grounds than in the past. This was due, on
one side, to breakthroughs in theoretical research and, on the other side, to the
impressive advancements made in observational techniques, which has allowed a
large quantity of high-quality data to be collected. A fundamental role in entering
what has been dubbed ‘the era of precision cosmology’ has been played by the
study of the cosmic microwave background (CMB). In the first part of this chapter,
I briefly outline the basics of the standard cosmological model and some key
elements of the early Universe. Next, I give a pedagogical exposition of the
physics of CMB anisotropy, showing its importance as a cosmological probe.
Finally, I highlight the progress made in CMB investigation in the last decade,
from the results of the COBE satellite, that opened a new era in the investigation
of the cosmos to the recent WMAP results, ending up with some future prospects
from the forthcoming Planck mission.

6.2 The standard cosmological model

Cosmology has a standard model, which provides a well-established framework
in which to understand the global properties of the physical Universe. There is
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116 The early Universe and the cosmic microwave background

a strong interplay between fundamental physics and cosmology, since the early
Universe is a natural laboratory for high-energy physics. What follows gives a
very sketchy picture of the main elements of the standard cosmological model. I
refer the interested reader to general books on the subject, such as those by Kolb
and Turner [19] and Peebles [30], for a thorough exposition.

6.2.1 The big bang model

The big bang model (or, more precisely, the Friedmann–Robertson–Walker
(FRW) model) provides a very successful description of the physical Universe
from very early times (t ∼ 10−2 s) to the present. It can easily explain some key
features of the observed Universe, such as

• the expansion law,
• the abundance of light elements,
• the existence of the cosmic microwave background (CMB) and
• the age of the oldest objects observed.

Furthermore, it provides a framework where the gravitational instability scenario
that explains the growth of cosmic structures can be easily accommodated.

The Universe appears to be homogeneous and isotropic on scales comparable
to its present observable volume. The geometry of such a Universe is described
by the Robertson–Walker metric1:

ds2 = gµν dxµ dxν = dt2 − R2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
(6.1)

where k is a parameter assuming the values 1, 0,−1 for positive, null or negative
space curvature, respectively. The scale factor R(t) describes the expansion of
the Universe. This is often parametrized in terms of a scale factor normalized to
unity at present: a(t) ≡ R(t)/R0. The time coordinate t is the proper time. The
coordinates r , θ , φ are called comoving: they label the position of observers at
rest in the expanding frame.

The proper distance in the Robertson–Walker metric is defined as

d ≡ R(t)
∫ r

0

dr ′
√

1 − kr ′2 . (6.2)

The quantity H ≡ Ṙ/R = ȧ/a is the Hubble parameter describing the expansion
rate of the Universe. The Hubble time, t ≡ H −1, gives the characteristic time
scale of the expansion. In c = 1 units, H −1 also identifies a characteristic length
scale, the Hubble radius, giving the approximate size of the visible Universe.
The present value of the Hubble parameter, H0, is called the Hubble constant.
This is usually parameterized in terms of the adimensional quantity h as H0 =
1 Units are chosen so that c = 1.
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100 h km s−1 Mpc−1. The Hubble expansion law is obtained by deriving the
proper distance with respect to time:

v ≡ ḋ = Ṙ

R
R

∫ r

0

dr ′
√

1 − kr ′2 (6.3)

that is
v = H d. (6.4)

The dynamics of the Universe, i.e. the time evolution of the scale factor,
is governed by the Friedmann equation, which can be derived by the Einstein
equation using as the stress-energy tensor that of an ideal fluid with time-
dependent energy density ρ(t) and pressure p(t):(

Ṙ

R

)2

+ k

R2 = 8πG

3
ρ. (6.5)

Imposing stress–energy tensor conservation results in the equation:

d[R3(ρ + p)] = R3 d p. (6.6)

Assuming a generic equation of state p = wρ with w independent of time, the
latter gives

ρ ∝ R−3(1+w). (6.7)

For example, for radiation p = ρ/3 and ρ ∝ R−4; for matter p = 0 and
ρ ∝ R−3; and for a cosmological constant (vacuum energy) p = −ρ and ρ ∝
constant. The evolution of the scale factor when the Universe is dominated by one
of these components is found by solving the Friedmann equation: R ∝ t1/2 for
a radiation-dominated Universe, R ∝ t2/3 for a matter-dominated Universe and
R ∝ exp(H t) (with H = constant) for a vacuum-energy-dominated Universe.

Deriving the Friedmann equation with respect to time, one gets

R̈

R
= −4πG

3
(ρ + 3 p). (6.8)

The Universe is expanding at present, so that Ṙ > 0 today. If, in the past, the
right-hand side was always negative (or ρ + 3 p > 0), then there must have been
some finite time when R = 0. This time is usually set as t = 0 and is called the
big bang.

The causal horizon (or particle horizon), rH(t), is the distance covered at
time t by a light signal emitted at time t = 0: all the points which, at time t ,
are further away than rH(t) have not had enough time to get in causal contact.
The horizon length is calculated by imposing ds = 0 (light-like interval) in the
Robertson-Walker metric:∫ t

0

dt ′

R(t ′)
=

∫ rH

0

dr√
1 − kr2

(6.9)
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so that the proper length of the horizon is

dH(t) = R(t)
∫ t

0

dt ′

R(t ′)
. (6.10)

The photon wavelength is affected as any other length by the expansion of
the Universe. The relative variation of the observed wavelength λo with respect
to the emitted wavelength λe due to the expansion is the redshift z:

z ≡ λo − λe

λe
. (6.11)

The redshift is related to the scale factor by

1 + z = R0

R
= 1

a
. (6.12)

By defining the critical density

ρc = 3H 2

8πG
(6.13)

and the density parameter

� = ρ

ρc
(6.14)

the Friedmann equation can be rewritten as

k = H 2 R2(� − 1) (6.15)

relating the space curvature to the quantity of matter in the Universe. Note that
this equation applies at any time and that � and ρc vary as the Universe expands.

6.2.2 Inflation

Despite its success, the big bang model has a number of shortcomings. Rather
than being real inconsistencies of the theory, these problems are essentially related
to questions about the initial state of the Universe that cannot be answered by the
FRW model itself.

The first problem of the big bang model is usually referred to as the horizon
problem. One manifestation of this problem is given by the fact that we receive the
thermal background radiation left over from the very early, very hot stages of the
Universe with nearly the same temperature from any point of the sky. However,
regions of the sky separated by angles larger than about 1◦ were outside the causal
horizon when those photons were emitted, preventing any physical process from
creating the observed uniformity. A closely related problem arises when trying to
explain the existence of density perturbations on scales larger than the horizon at
early times. Primeval inhomogeneities on scales of cosmological interest cannot
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have been produced by causal, microphysical processes taking place in the early
Universe.

Another problem of the big bang model is known as the flatness problem. If
we use equation (6.15) to trace back in time the evolution of the density parameter
�, we find that, as R → 0, � has to be closer and closer to 1. More quantitatively,
it turns out that in order to have � of order unity today, it had to be fixed with
enormous precision at early times. For example, �(1 s) = 1 ± �(10−16). Were
� not set this close to unity, the Universe would either have quickly recollapsed
or it would have expanded so rapidly as to reach a temperature of 3K in a tiny
fraction of a second. Equation (6.15) can also be used to relate the radius of
curvature of the Universe, defined as Rcurv ≡ R(t)|k|−1/2, to the Hubble radius
H −1: H −1/Rcurv = |� − 1|−1/2. So the flatness problem can be restated by
saying that the radius of curvature of the Universe had to be much bigger than the
Hubble radius at early times: Rcurv(1 s) � 108H −1.

Finally, fundamental physics theories predict the presence of a variety of
stable, massive particles, with very small annihilation cross sections, created in
the very early Universe. There is no way in the standard big bang model of
preventing these unwanted relics from becoming the dominant component in the
present Universe and contributing to the total energy density in such a way that
� � 1.

Starting from the pioneering work done by Starobinsky [43] and by Guth
[14], it became clear that a class of models, grouped under the generic term
inflation, can provide a mechanism for solving the problems of the big bang
model. The basic idea behind inflation is that, at some very early time, the
comoving Hubble radius decreased in time:

d(H −1/R)/dt < 0. (6.16)

This is the opposite of what happens in the standard big bang model. It is easy
to check that this condition is satisfied as long as R̈ > 0, which means that the
Universe had to undergo a phase of accelerated expansion.

Condition (6.16) immediately solves the flatness problem, as can be seen by
plugging it into equation (6.15): now, as the Universe inflates, � is pushed closer
and closer to 1, no matter what the initial value is. Stated differently, during
inflation the radius of curvature grew much bigger than the Hubble radius, so that
the observable portion of the Universe appears to be flat. Inflation also easily
solves the horizon problem. During inflation, small, causally connected regions
of the Universe rapidly grew much faster than the causal horizon. Regions of the
Universe that appear to be causally disconnected at late times were actually in
causal contact before inflation began. The accelerated expansion of the Universe
during inflation also diluted any unwanted relic, whose density rapidly became
negligible with respect to the total energy density.

Inflation is not an alternative to the big bang model. It is an additional
ingredient, a mechanism added to the model at very early times to explain its
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evolution at later times. Actually, the inflationary phase lasts for a very short
time, after which the Universe evolves according to the standard big bang model.

There is no universally accepted and tested model for inflation. There are a
number of viable candidates, all of which are based in one way or another on the
dynamics of a weakly coupled, homogeneous scalar field φ [1,21]. In its simplest
form, the equation of motion of such a field is

φ̈ + 3H φ̇ + V ′(φ) = 0 (6.17)

and its energy density and pressure are given by

ρφ = 1
2 φ̇2 + V (φ) (6.18)

pφ = 1
2 φ̇2 − V (φ) (6.19)

The expansion of the Universe contributes a friction term in the equation of
motion through H . The exact shape of the potential V depends on the specific
model of inflation. Note from equation (6.8) that the condition for inflation R̈ > 0
requires that ρφ + 3 pφ < 0. This is satisfied as long as φ̇2 < V (φ), i.e. if
the field potential energy overcomes its kinetic energy. This implies that, during
inflation, the field must be moving very slowly down the potential hill. In fact, a
common solution to the field equation of motion is based on the so-called slow-
roll approximation, which assumes that the field acceleration φ̈ is negligible, so
that

3H φ̇ � −V ′(φ). (6.20)

The conditions for the slow-roll assumption to hold are given by

ε ≡ 1

16πG

(
V ′

V

)2

� 1 |η| ≡ 1

8πG

∣∣∣∣V ′

V

∣∣∣∣ � 1 (6.21)

where ε and η are called the slow-roll parameters. Clearly, given an arbitrary
V , the existence of a slow-roll regime ensures that inflation can take place. The
potential remains roughly constant during slow roll and φ̇2 � V , so that the
Friedmann equation is simply:

H 2 � 8πG

3
V (φ) (6.22)

since, as R grows, the term k/R2 rapidly decays and can be neglected. This
Friedmann equation has an exponential solution for R. The logarithmic amount
of expansion between time t1 and t2, called the number of e-foldings N , is then
given by

N ≡ ln

(
R(t2)

R(t1)

)
=

∫ t2

t1
dt H = −8πG

∫ φ2

φ1

dφ
V (φ)

V ′(φ)
. (6.23)
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About 70 e-foldings (i.e. an expansion by a factor ∼ 1030) are enough to solve the
problems of the big bang model: in realistic models of inflation, this is obtained in
about 10−35 s. Inflation comes to an end when the field reaches the minimum of
the potential and it starts rapid, damped oscillations, dissipating its energy through
particle creation (a process called reheating). From now on, the evolution of the
Universe can be described by the standard big bang model.

One important feature of inflation is that it provides a mechanism for
generating super-horizon primordial density perturbations in the early Universe.
Broadly speaking, the mechanism goes as follows: consider a generic quantum
fluctuation δφ(x, t) in the scalar field φ. The Fourier expansion coefficients
of this fluctuation are δφk . During inflation, the wavelength of each Fourier
component will rapidly grow much bigger than the causal horizon. When this
happens, the corresponding fluctuation will ‘freeze’, since no causal mechanism
will be able to influence its evolution. At later times, long after inflation ends,
each wavelength will re-enter the horizon and the associated component of the
fluctuation will be seen as a density perturbation. Note that there is no way of
producing such a mechanism in classical cosmology: in the standard big bang
model, a certain comoving scale becomes smaller than the causal horizon at some
given time and remains inside the horizon ever after. In a similar way, inflation
also produces a stochastic background of gravitational waves. Gravitational
waves correspond to tensor perturbations in the spacetime metric, while density
perturbations are scalar. Density perturbations produced during inflation are
adiabatic or isentropic: they are genuine curvature perturbations in the spacetime
metric and leave the ratio of matter and radiation (or of any other two species)
constant at any point in space. Furthermore, they are Gaussian distributed (or
very close to Gaussian). The power spectrum of density perturbations produced
by inflation in the slow-roll approximation is quite simple:

Ps(k) = Ask
ns Pt(k) = Atk

nt (6.24)

for scalar and tensor density perturbations respectively, with

ns = 1 − 4ε + 2η nt = 2ε. (6.25)

Of course, since in the slow-roll regime η and ε must both be very small,
inflationary models usually predict a scalar spectral index very close to 1, a
property termed scale invariance. Similarly, the power spectrum of tensor
perturbations should be roughly constant, since nt � 0. The ratio of the amplitude
of tensor and scalar perturbations must satisfy the so-called consistency relation
r ≡ At/As = 13.6ε. Measuring the power spectrum of density perturbations is
then a powerful tool for testing the inflationary parameters.

Summing up, the inflation mechanism proved quite powerful as a refinement
of the standard big bang model and is now considered as an important ingredient
of the standard cosmological model. Independently of the details of the specific
model, the inflationary scenario makes a number of testable predictions:
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• the Universe must be very close to flat;
• primordial density perturbations in the Universe are Gaussian distributed,

adiabatic and have a power-law power spectrum; and
• a stochastic background of gravitational waves should be present in the

Universe.

Furthermore, constraining the slow-roll parameters by measuring the exact shape
of the power spectrum of primordial perturbations can rule out specific models of
inflation.

6.2.3 The cosmic budget

The evolution of the Universe in the big bang model is essentially determined by
its content. The total density parameter in a multi-component Universe is the sum
of the density parameters of the single components:

� =
∑

i

�i . (6.26)

Assuming that each component has an equation of state of the sort p = wρ, with
w independent of time, the Friedmann equation can be written as(

ȧ

a

)2

= H 2
0

[∑
i

�i a
−3(1+wi ) + (1 − �)a−2

]
(6.27)

where the density parameters are evaluated at present time. One of the main
tasks of observational cosmology is to obtain accurate estimates of the parameters
in the right-hand side of the Friedmann equation: the Hubble constant and the
contributions to � from the various components in the Universe. Let us analyse
each of these components in turn.

6.2.3.1 Radiation

The radiation component of the Universe (relativistic particles) has equation of
state pR = ρR/3. When the Universe is radiation dominated, the scale factor
evolves as a ∝ t1/2. According to the standard cosmological model, today the
radiation in the Universe is made of the cosmic microwave background photons
and three species of relic massless neutrinos. The present radiation density can be
expressed in terms of the photon temperature T , as

ρR = π2

30
g�T 4 (6.28)

where g� counts the total number of effectively massless degrees of freedom. This
can be computed, giving g� = 3.36, while the cosmic microwave background
average temperature is accurately measured to be T = 2.725 ± 0.001 K. Thus,
today the radiation gives a totally negligible contribution to the critical density:
�R = 4.31 × 10−5h−2.
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6.2.3.2 Matter

The equation of state of matter or non-relativistic particles is pM = 0, so that,
during matter domination, the scale factor evolves as a ∝ t2/3. The most familiar
contribution to matter in the Universe comes from baryons (or nucleons). The
abundance of light elements produced in the early Universe is strongly dependent
on the baryon-to-photon ratio, which is directly related to the present baryon
density. Measurement of primordial abundances of D, 3He, 4He, 7Li are a strong
probe of the baryon density and indicate that baryons contribute to roughly 5%
of the critical density. If � ∼ 1, as predicted by inflation and now accurately
confirmed by cosmological observations, most of the Universe is not made of the
same stuff of which we are made!

There is strong observational evidence that a large contribution (about 30%)
to the critical density comes from so-called dark matter. Theoretically, the most
plausible candidate for dark matter is some heavy, weakly-interacting massive
particle, left from the very early stages of the evolution of the Universe. The
standard picture for the production of such a relic is as follows. The candidate
particle is assumed to be initially in thermal equilibrium with the primordial
plasma, so that its abundance decreases as exp (−MX/T ) where MX is the
particle mass and T is the photon temperature. When the interaction rate of
the particle, , becomes smaller than the expansion rate of the Universe, H ,
the particle decouples from the thermal plasma and its abundance becomes
constant (a moment known as freeze-out). Then, a cosmologically relevant relic
abundance can be achieved provided the particle has a large enough mass and a
small enough interaction rate. There are many candidates for dark matter (for
example, supersymmetric partners): unfortunately, since it interacts so weakly,
direct detection of dark matter proves challenging. Some light on the nature
of dark matter can be shed by accurate measurements of its present density by
cosmological observations.

6.2.3.3 Dark energy

In its most general form, Einstein equation includes a so-called cosmological term
� in addition to the familiar stress–energy tensor:

Rµν − 1
2 gµν R = 8πGTµν + �gµν. (6.29)

Adding a cosmological constant term is completely equivalent to introducing a
new contribution to the stress-energy tensor from a component with

ρV = �/8πG pV = −�/8πG. (6.30)

It can be shown that this is exactly the kind of contribution resulting from zero-
point fluctuations of quantum fields or vacuum energy. The equation of state of
vacuum energy is pV = −ρV and the Universe expands exponentially when it is
vacuum dominated: a ∝ exp [(�/3)1/2t].
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The introduction of this seemingly harmless contribution to the energy
density of the Universe has unfortunately disturbing implications. First of all,
any estimate of plausible values for the vacuum energy density from fundamental
physics exceeds the critical density ρc by at least 40 orders of magnitude, while
observational cosmology sets the total energy density of the Universe at roughly
the critical value, � ∼ 1. One might hope that some mechanism is leading
to an exact cancellation of the contributions to the vacuum energy, so that it is
exactly ρV = 0: however, such a mechanism is currently unknown. The situation
is even more puzzling, since recent observations of distant type Ia supernovae
[33, 37] have shown that we live in a Universe that has just entered a vacuum-
dominated epoch, starting a phase of accelerated expansion. This means that the
cosmological constant term is still very small compared to theoretical estimates
but it is large enough (ρV/ρc ∼ 0.7) to be cosmologically relevant in the present
Universe. There seems to be a serious fine-tuning problem: if � is non-zero,
then why is it so small? Furthermore, given the observed value of �, the vacuum
energy was never important in the past evolution of the Universe but it is starting
to be the dominant contribution at present time: we then seem to live in a very
special moment in the Universe, an annoying coincidence indeed!

The vacuum-energy problem may, in fact, be the biggest mystery of modern
physics [38]. A possible way to alleviate it, and one that has interesting
and testable implications for cosmology, is to consider a generalization of the
cosmological constant term, that has been termed dark energy. As shown
when discussing inflation, a scalar field φ with effective potential V (φ) has an
equation of state with w = (φ̇2/2 − V )/(φ̇2/2 + V ). Any value of w such that
1 + 3w < 0 results in an accelerated expansion, so it is dynamically equivalent to
a cosmological constant. The interesting feature of these models is that they admit
tracking solutions, in which the dark energy can reach the present value starting
from a very different set of initial conditions. This mitigates the fine tuning and
coincidence problems but, of course, leaves open the questions about the nature
of the field φ. Cosmological constraints to w can be able to discriminate among
dark energy models by saying something about the scalar field potential V . An
excellent review on dark energy from the point of view of both cosmology and
fundamental physics is [27].

6.3 The cosmic microwave background

The cosmic microwave background (CMB) is one of the primary tools for
investigating the physics of the early Universe and constraining the parameters
of the standard cosmological model. It provides a picture of the Universe when
it was only a few hundred thousand years old and its physics can be described by
simple thermodynamics and linear perturbation theory.
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6.3.1 The primordial plasma and the CMB

The CMB was serendipitously discovered in 1964 by radio astronomers Arno
Penzias and Robert Wilson, as an excess noise in the radio antenna they were
testing at the Bell Labs in Homdel, New Jersey [32]. The CMB intensity
observed by Penzias and Wilson was highly isotropic (i.e. it was independent
of the direction of observation in the sky) and resulted in being consistent with
the emission expected from a black body at a temperature of about 3 K.

The existence of a thermal background radiation has a natural explanation in
the standard hot big bang model [9]. According to this model, the temperature
in the early Universe is so high that neutral atoms cannot exist. Frequent
Thomson scattering in the primordial plasma maintains photons and free electrons
in thermodynamical equilibrium. Such a system is characterized by a black body
energy spectrum and is completely described by thermodynamical quantities, like
the black body temperature T . The plasma optical depth (i.e. the mean number of
collisions experienced by a photon from a certain time to the present) is given by

τ (η) = −
∫ η

η0

dη′ cσTne(η
′)a (6.31)

where η0 is the present conformal time (with dη = c dt/a), σT is the Thomson
cross section and ne is the number density of free electrons. The mean free path
of photons, τ̇−1 = 1/σTnea, is very close to zero in the primordial plasma. The
fraction of free electrons Xe at any given time is approximately governed by the
Saha equilibrium equation:

X2
e

1 − Xe
= (2mekT )3/2

nH
e−B/kT (6.32)

where B = 13.6 eV is the binding energy of hydrogen. The formation of neutral
hydrogen atom, a process known as recombination, can take place as the Universe
cools down at about T� � 3000 K: when this happens, Xe rapidly drops to zero
and photons can travel essentially unimpeded. The transition from τ̇−1 � 0 to
τ̇−1 → ∞ is quite rapid and happens at a� � 10−3 or t� ∼ 105 yr after the
big bang. The CMB is made of the photons we receive from this epoch, cooled
down by the Universe expansion so that T0 = T�a� � 3 K. Its black body energy
spectrum is a result of the matter–radiation thermodynamical equilibrium existing
at early times.

6.3.2 The anisotropy of the CMB

The standard picture for understanding structure formation in the Universe is
based on gravitational instability: the observed large-scale structure formed by
gravitational amplification of small density perturbations generated in the early
Universe. In such a scenario, the presence of anisotropies in the temperature
distribution of the CMB is unavoidable, as density fluctuations leave an imprint
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in the CMB at the time of photon–matter decoupling. The first calculations
of the expected anisotropy of the CMB were done by Sachs and Wolfe [39],
who predicted the level of anisotropy induced by fluctuations in the gravitational
potential and by Silk [41], who computed the amplitude of density fluctuations at
recombination needed to produce galaxies. It was immediately clear that, despite
the high level of isotropy observed by Penzias and Wilson, fluctuations in the
CMB temperature had to exist in order to explain the level of inhomogeneity
observed in the present Universe.

The largest anisotropy observed in the CMB is not intrinsic but originates
from the fact that our reference frame (the Solar System) moves at speed v�
relatively to the CMB photons. This gives rise to a dipole anisotropy due to the
Doppler effect:

�T/T ≈ (v�/c) cos(θ) (6.33)

where θ is the angle between the direction of motion and the line of sight2.
Intrinsic CMB fluctuations generated at or before recombination are called

primary anisotropies. The main contributions to primary anisotropies are as
follows.

• Intrinsic fluctuations: �T/T ∝ δ, where δ is the matter density perturbation
at recombination: if the perturbations leave unchanged the entropy of the
radiation per baryon (adiabatic fluctuations), then �T/T = 1/4δγ = 1/3δ.

• Velocity-induced fluctuations: �T/T ∝ v/c, where v is the peculiar
velocity of the matter at decoupling: photons get extra energy when scattered
by matter in motion.

• Gravitational potential fluctuations: �T/T ∝ δφ/c2, where δφ is the
fluctuation in the gravitational potential at decoupling: photons leaving the
perturbed region have to ‘climb’ out of the potential well, experiencing
gravitational redshift (Sachs–Wolfe effect [39]).

Interactions experienced by the background photons between recombination
and the present may give rise to sub-dominant effects, the so-called secondary
anisotropies. Possible sources of secondary anisotropies include gravitational
lensing [6], reionization of the intergalactic medium, inverse Compton scattering
by free electrons in hot intracluster gas (thermal Sunyaev–Zel’dovich effect [44]),
variation of the gravitational potential after decoupling (integrated Sachs–Wolfe
effect [39]), passage through nonlinear structures (Rees–Sciama effect [36]), etc.

6.3.3 The statistics of the CMB

In inflationary models, primordial density perturbations follow a Gaussian
statistics: the probability of having a density contrast δ(x) ≡ δρ(x)/ρ̄, at some
point of space x and at some initial time ti is proportional to exp(−δ2/σ 2). Small

2 Incidentally, from the observed dipole amplitude, which is ∼ 3 mK [4], we measure v� ∼
600 km s−1
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deviations from Gaussianity are predicted in non-standard inflationary models
and in non-inflationary scenarios: however, the observed upper limits to these
deviations are very small and, therefore, I will restrict the discussion to the case
of Gaussian density perturbations.

The evolution of density perturbations is more easily understood by
expanding the density contrast in plane waves:

δ(x, t) = V

(2π)3

∫
V

d3k δk(t) exp (−ik · x) (6.34)

where V = L3 is the fundamental volume and periodic boundary conditions have
been imposed. Every component of the expansion, δk(t), describes the evolution
of a perturbation of given characteristic scale λ ≡ 2π/k. Note that the Fourier
components of the density field only depend on the module of the wavenumber,
k, because of the isotropy of the Universe. An appealing consequence of working
in Fourier space is that Gaussian initial conditions imply that each coefficient δk

is a Gaussian random variable with zero average, 〈δk〉 = 0, and random phases,
i.e. the modes corresponding to different wave numbers are uncorrelated:

〈δkδ
′
k〉 = 0 if k �= k ′ (6.35)

and their evolution can be followed independently. The symbol 〈·〉 denotes
the average on the statistical ensemble, i.e. on every possible realization of
the statistical field. The statistical properties of Gaussian random density
perturbations are completely described by the power spectrum P(k) ≡ 〈|δ(k)|2〉.
A power-law power spectrum, P(k) = Akn , as predicted by inflation, is usually
assumed.

The evolution of perturbations in linear regime leaves their statistical
properties unchanged. So the temperature fluctuation of the CMB on the sky,
δT/T , is a two-dimensional random Gaussian field: such a field is completely
described in terms of the two-point correlation function:

C(α) =
〈
δT

T
(γ̂1)

δT

T
(γ̂2)

〉
(6.36)

where α is the angle between the directions of observation γ̂1 and γ̂2.
The anisotropy as a function of the direction of observation can be expanded

in spherical harmonics:

δT

T
(γ̂ ) =

∑
lm

almYlm(γ̂ ). (6.37)

The assumption of Gaussianity implies that each coefficient alm is a Gaussian
random variable, with zero mean,

〈alm〉 = 0 (6.38)
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and covariances

〈alm a
�
l′  m′ 〉 =  C lδll′δ mm′ . (6.39)

The coefficients Cl ≡ 〈|alm | 2〉 represent the angular power spectrum o f the CMB
anisotropy in multipoles sp ace. The Cl s are independent on th e azimuth al index m
as a consequence o f the isotropy of th e Universe. The angular correlatio n functio n
becomes

C(α) =
∑

l

2l + 1

4π
Cl Pl (cos α)  (6.40)

wh ere Pl are the Legendre polynomials.
Then, f or Gaussian initial conditions, the angular power spectrum Cl carries

all the statistical in formatio n o n the angular temperature aniso tropy o f the CMB.
The variance o f the temperature fluctu ations is given by:

〈∣∣∣∣δ T

T

∣∣∣∣
2 
〉

=
∑

l

2l + 1

4π
Cl . (6.41)

Each Cl is asso ciated with an angular scales θ given by

θ ≈ 180◦

l
. (6.42)

The causal horizon at decouplin g subtends an angular scale o n the sky which is
approximately given by

θH ≈ 1◦� 1/ 2 (6.43)

so the p ower sp ectrum f or l � 200 is left unchanged b y physical processes
occurring prio r to the decouplin g3 and is fixed only b y initial conditions while,
for l � 200, it will sh ow a strong dependence o n cosmological parameters.

The angular power spectrum o f the CMB can be computed in a g iven
cosm ological model b y f ollowing the evo lution o f each mode of the d ensity
perturbations. Each alm will be a superposition of contributions from different
modes, alm(k), and the linearity of the evolution implies that each alm(k) is
proportional to the initial density perturbation δk . Figure 6 .2 sh ows an example of
a theoretical power spectrum calculated for a fiducial cosmological model. Note
the absence of features at low multipoles and the presence of a series of peaks
in the higher l region. I will say more on the dependence of these peaks on
cosmological parameters later on.

A final note on the statistics of the Cls. They represent the variances of
independent Gaussian random variables: Cl = 〈|alm |2〉. The ensemble average
should be computed on any possible realization of the random field but, in real,

3 Of course, post-recombination effects can alter these regions of the spectrum.
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life we only have one Universe to observe. It can be shown that a maximum-
likelihood estimator of Cl can be computed as

C̃l = 1

2l + 1

l∑
m=−l

|alm |2. (6.44)

The estimator C̃l is unbiased, i.e. its ensemble average is equal to Cl .
Furthermore, it is distributed as a chi-square with 2l + 1 degrees of freedom,
so that its variance is

Var(C̃l) = 2

2l + 1
Cl . (6.45)

This unavoidable uncertainty, deriving from the fact that we only have 2l + 1
samples to estimate a given Cl , is called cosmic variance and represents the
fundamental theoretical limit to the accuracy of any measurement of the angular
power spectrum.4

6.3.4 Computing the anisotropy

As I will show in more detail later, the observed level of anisotropy of the CMB is
very small, about 10−5 with respect to the average. This means that the Universe
was extremely smooth at recombination and that linear perturbation theory can be
applied in order to calculate the expected CMB temperature anisotropy.

The full general-relativistic treatment of the evolution of linear perturbations
in an expanding Universe was first developed by Lifshitz in 1946 [22]. In
this approach, small metric perturbations hµν are added to a flat, homogeneous
and isotropic spacetime metric ηµν and the corresponding perturbed Einstein
equations are solved.

The fact that each density perturbation mode evolves independently greatly
simplifies the calculation. However, calculating the expected CMB anisotropy
for a given cosmological model is not a trivial task at all. The evolution of
perturbations has to be followed from very early times to the present, using a
complicated set of coupled differential equations [23]. In a standard adiabatic
inflationary scenario, the quantities to be computed include the matter density
contrast δ and velocity β ≡ v/c, the metric perturbation hµν and the radiation
distribution function perturbation fγ and density contrast δγ .

Peebles and Yu [31] first derived the equation that governs the evolution of
linear fluctuations in the photon brightness. After some manipulations, this can
be rewritten in Fourier space as an equation for the k-component of the CMB
temperature fluctuation observed in the sky direction γ̂ at conformal time η,
indicated by � = �(γ̂ , k, η):

�̇ + ikcµ� + H = −τ̇ (δγ /4 + µβ − �). (6.46)
4 A larger uncertainty arises when observing limited regions of the sky. In this case the variance is
increased because of the fact that even fewer modes are available due to the finite size of the observed
patch. This is called sample variance.
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Here, the dot indicates the derivative with respect to conformal time. The
reference frame was chosen so that the z-axis is aligned with the k vector for
each Fourier mode and k · γ̂ ≡ kµ. All of the metric perturbations terms are
collected in the quantity H ≡ (1 − 3µ2)∂h33/∂ t − (1 − µ2)∂h/∂ t .

Over the years, many groups have developed numerical codes to solve the
coupled set of equations for � and for the other relevant physical quantities in an
exact way, for any particular cosmological model. The standard approach was to
make use of the Legendre expansion

�(µ, k, η) =
∑

l

(−i)l(2l + 1)�l(k, η)Pl(µ) (6.47)

resulting in a hierarchy of differential equations for the �l at arbitrary l. The
CMB angular power spectrum can then be computed using the formula:

Cl = 2

π

∫
dk2 P(k)|�l(k, η0)|2. (6.48)

In 1996, Seljak and Zaldarriaga [40] developed a fast algorithm based on the
line of sight solution:

�(η0)e
ikcµη0 =

∫ η0

0
dη [τ̇ (δγ /4 + µβ) + H ]e−τeikcµη. (6.49)

Using the identity eikcµη = ∑
l(−i)l(2l + 1) jl[kc(η)]Pl(µ), where jl are the

Bessel functions, allows the l dependence to be isolated in a purely geometrical
model-independent factor that can be precomputed for all the models. This
opened up the possibility of computing a large number of theoretical predictions
for the CMB anisotropy in different cosmological models in a reasonable time.

Simplified analytical treatments can be used to obtain a physical intuition
on the different processes governing the generation of anisotropies in the CMB,
and to understand how the peaks in the power spectrum depend on cosmological
parameters [18]. One useful approximation is to assume that recombination
happens instantaneously, and that matter and radiation are perfectly coupled
(τ̇−1 = 0) before recombination. This simplifies the previous line of sight
integral, since now the dominant contribution to the anisotropy originates from
an infinitely thin shell at η = η�, and is given by

�l(η0) ≈ �0(η�) jl[kc(η� − η0)] (6.50)

where I have made use of the identity �0 = δγ /4. Since the Bessel function jl(x)

is sharply peaked at l � x , the main contribution to each Cl will come from k
modes such that kc(η� − η0) ≡ k D� � l, where D� is the distance to the shell
at η� where matter and radiation decouple. It then only remains to compute the
source term �0(η�).
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The equation for �0 in this tight-coupling approximation is

�̈0 + ȧ

a

�̇

1 +� �̇0 + k2c2
s �0 = −k2

3
φ (6.51)

where� ≡ 3ρB/4ργ and cs = c/[3(1+�)]1/2 is the sound velocity. The quantity

φ ≡ 1

2k2

(
ḧ + ȧ

a

�

1 +� ḣ

)
(6.52)

is the Newtonian gravitational potential.
So the evolution of perturbations prior to recombination in the tight-coupling

regime is essentially governed by a forced harmonic oscillator equation. This
has to be completed with the standard generalization of the continuity equation,
the Euler equation and the Poisson equation, in order to describe the velocity,
pressure, density and gravitational potential of the fluid.

We can make some additional simplifying assumption. First of all, we can
treat the gravitational potential φ as independent of η, which is true in a matter-
dominated Universe. The other simplification is to assume that any characteristic
time scale is small compared to the Universe expansion time scale, so that we can
neglect ȧ/a. With these hypotheses, the equation becomes

�̈0 + k2c2
s �0 = −k2φ/3 (6.53)

or
(1 +�)�̈0 + 1

3 k2c2�0 = − 1
3 k2(1 +�)φ. (6.54)

The solution to this equation is

�0(η) = A1 cos(kcsη) + A2 sin(kcsη) − (1 +�)
φ

c2
. (6.55)

If we fix the initial conditions as �̇0(0) = 0 and �0(0) = −2φ/3c2 (the latter
comes from Poisson and Euler equations), we obtain

�0 = ( 1
3 +�)

φ

c2 cos(kcsη) − (1 +�)
φ

c2 . (6.56)

The physical interpretation of this solution is very simple. The baryon-to-
photon ratio � acts like an effective mass in the harmonic oscillator equation
through the factor (1 +�). The baryons tend to collapse due to self-gravitation.
The restoring force is provided by the radiation pressure k2c2/3. This sets
up acoustic oscillations in the baryon–photon fluid (the sound velocity cs
quantifies the resistance of the fluid to compression): the higher � is, the
larger the amplitude of the oscillations is. The driving force term due to
gravitation, constant in our approximation, simply displaces the zero point of the
oscillations. Increasing � enhances this displacement and gives more amplitude
to compressions over rarefactions, because of the increased inertia of the fluid.
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Figure 6.1. The effect of the geometry of the Universe on the CMB temperature anisotropy
pattern. Because of light-ray geodesic deviation, the same linear scale is seen under
different angles depending on the curvature of the metric (see figures on the left). This
effect modifies the apparent typical dimension of the temperature fluctuations (as shown
on the simulated CMB maps on the right).

If we freeze the oscillations at the time of decoupling, η�, each mode will
be caught in a different stage of oscillation. The total power will have the largest
contributions |�0(η�)|2 from modes having kcsη� ≡ kS� = mπ , where I have
introduced the sound horizon at recombination, S�. This results in a harmonic
series of peaks in the angular power spectrum at locations lm = ml1, where the
location of the first peak is l1 = π D�/S�. Odd peaks are due to compression
of the fluid, even peaks to rarefaction: so the odd peaks will generally be higher
than the even peaks because of�. Increasing the baryon content will enhance this
effect. The fact that the k modes corresponding to peaks in the power spectrum are
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Figure 6.2. T he a ngul ar pow e r s pect r um of t he C MB t emper a t ur e ani s ot r opy. I n t he upper
l e f t - hand panel , t he t heor e t i cal pow e r s pect r um c or r e spondi ng t o t he i nfl at i onar y model
w hi c h best fi t s cur r e nt obser va t i ons. T he ve r t i cal l i nes cor r e spond t o t he a ppr oxi mat e
angul ar scal e of t he causal hor i z on θH and t o t he dampi ng s cal e θ D . In t he remaining plots,
the effect of varying some cosmologi cal parameters with respect to the fi ducial model:
clockwise, the curvature of the Universe, related to the total density parameter �, the
H ubbl e c onst a nt H0 = 100h km s−1 Mpc−1 and t he densi t y par a met e r of bar yons �b .

fixed by th e size o f the sound horizon at recombin atio n S� ≡ c sη� explains wh y
th e p eak s wer e called ‘ aco u stic’ . Wh ile in a flat Un iver se, th e r e latio n b etween
k modes and multipole l is, as we saw, fixed by the distance  D�  , in curved space
th is is not so simple. For ex ample, if th e Universe is open, th en th e g eodesics
are curved with respect to the flat case, so that the same physical scale on the last
scattering surface is seen today under a smaller angle. The position of the peaks
t h e n m ove s t o h i g h e r l s. Th is p r o jectio n e ff ect is illu str a ted in fig u r e 6 .1 .

To complete this rapid overview of the physics of CMB anisotropy, I
should mention an effect arising from the failure of the simple tight-coupling
approximation used in the previous discussion. Approaching recombination, the
mean free path of the photon’s interaction with matter increases gradually and the
hypothesis of perfect coupling breaks down. A photon can escape from an over-
dense region through random walk: this results in the fact that perturbations in the
photon fluid on scales smaller than a certain characteristic length (related to the
mean free path of the photons) are erased. This shows up as a damping (known
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as Silk damping [41]) o f the peaks in the power spectrum at h ig h l s. The damping
length is g iven by λ2

D ∼ k−2
D ∼ c 2 

∫ 
dη τ̇−1 and, for flat models, corresponds to

l ∼ 1000 in th e p ower sp ectrum. The d amping factor is approximately e−( k/ kD) 2 
.

Fin a lly, var iatio n s in th e g r av itatio n a l p o ten tial ( th at wa s h eld c o n stan t in th e
simplified picture d iscussed earlier) boost the amplitude of the p eaks through the
forcin g term φ . Sin ce th e potential changes durin g the radiation-domin ated epoch,
decreasin g the Hubble constant h while keeping fixed the other p arameters will
in cr ease th is e ff ect b y d e lay in g th e m atter- r a d iatio n e q u a lity.

Many additional effects exist th at can only b e followed through a more
detailed treatment. The resu lts of a full numerical so lu tio n o f the ex act equations
governing the evolution of the perturbations is shown in figure 6.2, showing
th e angular power spectrum as a functio n o f d ifferent cosmological parameters.
Despite the many simplifying assumptions made in the previous discussion, the
q u a litative b e h av io u r d e scr ib e d h er e is c lear ly v isib le in th e r e su lts o f th ese
accurate calculations.

6.4 Past, present and future of CMB observation

As I showed in the previous sections, there is a lot to learn from observations of
the CMB anisotropy. The last decade h as been a p eriod o f intense experimental
activ ity in th is field , w h ich h a s r esu lted in a n u m b e r o f im p r e ssive ach ieve m e n ts
and in a huge progress in our understanding of physical cosmology.

6.4.1 The COBE satellite

NASA launched the COBE (COsmic Background Explorer) satellite in 1989,
with th e purpose o f p erformin g full sky observations of th e CMB from space
(figure 6 .3). The COBE results were first announced in 1992, causing a revolutio n
in observational and th eoretical cosmology.

The FIRAS (Far Infra-Red Abso lu te Sp ectrometer) in strument aboard COBE
measured th e energ y spectrum o f the CMB with stunning precision. The b lack
body nature of the CMB was p roved conclusively, signing a huge su ccess o f the
big b ang model (figure 6 .4) [11]. The CMB temperatu re measured by FIRAS is
2. 725 ± 0. 001 K [24].

The DMR (Differential Microwave Radiometer) instrument d etected, f or
th e fir st tim e, tiny tem p e r a tu r e flu ctu a tio n s in th e CMB, o f th e o r d e r o f 1 0−5 ,
at angular scales of about 7◦  [42]. The importance of this result cannot be
overemphasized. The CMB aniso tropy m easured by COBE was interpreted as
being cosmological in origin, r eflectin g inhomogeneities in the distribu tion o f
matter in the universe at the time of decoupling. This is crucial for understanding
the initial conditions that seeded the f ormation o f the larg e-scale structure we
observe in the present Universe. The microwave sky observed by COBE is shown
in th e upper map of figure 6 .6 [3]. This map does not in clude th e d ipole aniso tropy
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Figure 6.3. NASA’s COBE satellite.

(corresponding to temperature differences in directions making an angle of 180◦)
of order 10−3 of the average temperature, which is due to our motion with respect
to the background photons.

6.4.2 The hunt for the peaks

In the decade following the release of the COBE results, the experimental efforts
focused on measuring the CMB anisotropy at intermediate and small angular
scales. These scales, encoding most information on the early universe and on
cosmological parameters, were not accessible to COBE because of its low angular

Copyright © 2005 IOP Publishing Ltd.



136 The early Universe and the cosmic microwave background

Figure 6.4. The energy spectrum of the CMB, as measured by the FIRAS instrument on
board COBE, superimposed to the prediction for a black body at temperature 2.725 K. The
measured data (whose error bars are not visible at this scale) are indistinguishable from the
theoretical curve. (From [11].)

resolution. Several experiments, conducted from 1992 to 1998, either from
the ground or from balloon-borne payloads, explored the CMB angular power
spectrum in the region between few arcminutes to about one degree. Although
each single experiment could only probe a narrow band in l-space, the combined
measurements seemed to indicate a rise in the power spectrum at l ∼ 200.

Thanks to the progress in detector technology, between 1998 and 2000
the experiments TOCO [25], BOOMERanG [7] and MAXIMA [16] were able
independently, for the first time, to resolve clearly the first acoustic peak in the
angular power spectrum. BOOMERanG and MAXIMA also produced the first
high-resolution (about 10 arcmin) maps of the CMB, although on small patches
of the sky. The detection of the first peak served to support the inflationary
scenario and allowed the total energy density of the universe to be measured with
unprecedented accuracy. This turned out to be very close to the critical value,
� � 1, corresponding to a flat universe [2, 7].

Later, in 2001, the DASI [15], BOOMERanG [8] and VSA [13] experiments
detected hints of a second acoustic peak in the CMB power spectrum, further
strengthening the case for the adiabatic nature of primordial fluctuations. Then, in
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Table 6.1. WMAP instrument al features (from [4]).

C hannel K K a Q V W

C e nt r a l f r e quency ( G H z ) 22. 8 33 40. 7 60. 8 93. 5
B a ndw i dt h ( G H z ) 5. 5 7 8. 3 14 20. 5
A ngul ar r e sol ut i on ( F W H M) 0. 82◦ 0. 62◦ 0. 49◦ 0. 33◦  0. 21◦
Sensitivity (µK per 0.3◦ pi xe l ) 35 35 35 35 35
Number of channels  4 4 8 8 16

2002, th e Archeops [5] experiments secured the measurement o f the first acoustic
peak and the CBI [28] and ACBAR [20] experiments explored th e spectrum at
sm aller angular scales, m easurin g the expected dampin g o f p rimary anisotropy.

6.4.3 The WMAP satellite

Th e WMAP ( Wilk in so n M icr owave An iso tr o py Pr o b e ) satellite 5 , launched b y
NASA aboard a Delta rocket on 30 June 2001, represents th e state-of-the-art
of CMB experiments. In many ways, WMAP is a follow-up to COBE. It was
designed to make full-sky map of CMB aniso tropy b y looking at temperature
diff erences in the sky, u sing diff erential r adiometers in five frequency b ands.
WMAP scan s larg e r eg io n s o f th e sky in r e lative ly sh o r t tim es, w ith a str o n g
cross-linking among observations performed at different times: this is very
useful to control systematic effects and correlated instrumental noise. WMAP
operates from the L2 Lagrangian point, completin g a full sky coverage in a six -
month p eriod. WMAP detector technology is based o n HEMT (High Electron
Mobility Tr ansistor) r adiometers, p assively cooled at about 90 K. WMAP’s main
instrumental features are summarized in table 6 .1

Results of the first year of observations by WMAP (August 2001–02),
corresponding to two full-sky surveys, were announced at the beginning of 2003
(see [4] and companion p apers cited therein ) . Data co llected later a r e cu r r e n tly
bein g analy sed. Figure 6 .6 sh ows the CMB map produced by WMAP at 94 GHz.
Th e p atter n o f an iso tr o py is clear ly co n sisten t with th at o b ser ve d b y COBE a f ter
four years o f observation. WMAP has 3 0 times better resolutio n than COBE.
Wh en th e WMAP m ap is d eg r ad ed at COBE r e so lu tio n , th e d iff e r e n c e m ap is
below the in strumental noise level.

Figure 6 .7 sh ows the CMB temperatu re anisotropy power spectrum
measured by WMAP. This is the best currently available measurement o f the
p ower sp ectr u m a n d is co sm ic va r ian ce lim ited u p to l � 350. WMAP
resu lts prov id e an extraordinary confirmatio n o f the th eoretical predictions. The
presence of at least two acoustic peaks in the power spectrum is evident. The

5 http://m ap. g s f c. nas a. g ov
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Figure 6.5. NASA’s WMAP satellite (courtesy of NASA/WMAP science team).

cosmological in terpretatio n o f these resu lts lends further support to the standard
cosmological model b ased on big b ang p lu s inflation. A flat universe, with
adiabatic, Gaussian, scale-invariant p rim o r d ial d en sity flu ctu a tio n s is p e r f ectly
consistent with th e WMAP d ata. The values o f the main cosm ological parameters,
estim ated u sin g th e WMAP d a ta, a r e su m m a r ized in tab le 6 .2 . T h e se va lu es
are generally more precise than those obtained with other kinds of observations,
and are consistent with them. For example, the baryon density at recombination
measured by WMAP is in agreement with big bang nucleosynthesis predictions
and measurements of the primordial abundance of light elements [10, 26, 34];
the Hubble constant value agrees with the measurement by the Hubble Space
Telescope [12]; the age of the Universe is consistent with the value from stellar
observables [17, 35]; and finally, the dark matter content of the Universe is in
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Figure 6.6. Maps of CMB temperature anisotropy. The sky, in galactic coordinates,
is represented in Mollweide projection. Bright spots are hotter the average, dark spots
colder. Temperature scale is about ±100 µK. In the upper panel, the map produced by
COBE/DMR after four years of observation [3]. In the lower panel, the map produced by
WMAP after one year of observation [4]. WMAP has 30 times better resolution than
COBE. The contributions from galactic emission and the dipole anisotropy have been
subtracted from the maps. (Courtesy NASA/WMAP science team.)

agreement with the one derived by the large-scale matter distribution [45]. The
low value of the matter density, combined with the fact that � � 1, confirms
that most of the energy density in the Universe is provided by dark energy,
as recently indicated by high-redshift type Ia supernovae observations [33, 37].
The outstanding concordance among completely different kinds of observations
testifies to the level of maturity reached by cosmology in recent times.
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Figure 6.7. The angular power spectrum of CMB temperature anisotropy. The dots are
the measurements from the WMAP, ACBAR and CBI experiments. The continuous curve
is the theoretical model which best fits the data. The grey region represents the cosmic
variance uncertainty for this theoretical model. (From [4].)

Table 6.2. Some cosmological parameters estimated by WMAP (from [4]).

Parameter Symbol Value

Total density � 1.02 ± 0.02
Baryon density �b 0.044 ± 0.004
Dark matter density �m 0.27 ± 0.04
Dark energy density �� 0.73 ± 0.04
Equation of state of dark energy w < −0.78 (95% C.L.)
Hubble constant (km s−1 Mpc−1) H0 71+4

−3
Age of the Universe (Gy) t0 13.7 ± 0.2
Optical depth of the Universe τ 0.17 ± 0.04
Spectral index of primordial density perturbations ns 0.93 ± 0.03

WMAP mission has been approved for four years of operation in L2. In
the next few years, further data and analysis will provide more and more detailed
cosmological information.
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6.4.4 The Planck Surveyor

Desp ite its ex tr ao r d in ar y ach ieve m e n ts, th e WMAP m issio n d o e s n o t r e p r esen t
th e end of th e sto ry. Much remains to be to ld about th e CMB temperature
anisotropy. On one hand, WMAP angular reso lu tio n does not allow the dampin g
tail of th e CMB power spectrum to b e investig ated: although th e first two acoustic
peaks in the sp ectrum are now accurately reso lved, h igher l s are affected by larg e
u n cer tain ties. Oth e r ex p e r im e n ts, esp ecially in ter f e r o m e ter s, a r e star tin g to u nveil
th e small angular scale d etails of th e aniso tropy p attern bu t m uch work n eeds to
be done. On the other h and, WMAP maps are still affected by a non-negligible
instrumental noise, which strongly r educes the possibility of direct pixel space
analyses.

ESA’s Planck Surveyor6 , p lanned for launch in 2007, will represent the th ird-
generatio n CMB sp ace mission (figure 6 .8). The main p roduct o f the Planck
mission will be full-sky maps in n in e frequency b ands between 30 and 900 GHz.
Planck frequency coverage will be th e wid est ever for a single microwave
experiment. This is crucial for separa ting the various components that constitute
th e observed signal and will allow the investig atio n o f a larg e variety of poorly
known astrophysical processes, both g alactic and extragalactic. Planck will
carry on board two d ifferent in struments: th e HFI (Hig h Frequency Instrument),
based o n bolometric d etectors, and the LFI (Low Frequency Instrument), which
uses HEMT radiometers. Exploiting this redundancy and comparison among
measurements will be ex tremely important for the detectio n and removal o f
sy stematics. The m ain experimental features of Planck are summarized in
tab le 6 .3 .

Plan ck ’s in str u m e n tal sen sitiv ity will b e seve r a l tim es b e tter th a n WMAP’s.
The d esig n o f Planck’s d etectors and optics (a 1 .5 m p rimary mirror and a o ff-axis
secondary, coupled to an array o f corrugated horns in th e focal plane) will allow
the b est possible r esolution to b e obtained at each frequency, making it possible
to r e so lve d etails o f a f ew ar cm in in th e sky.

The accuracy of the CMB angular power spectrum m easurement b y Planck
will be limited by cosmic variance and by unavoidable foreground contamination,
over the entire range of angular scales relevant to th e p rimary CMB aniso tropy,
i.e. from l = 2 up to l ∼ 1000, well below the dampin g scale. This will allow the
vast amount of cosmological in formatio n encoded in the CMB to b e extracted.
Planck will be able to measure the co sm ological parameters to unprecedented
accuracy, m inimizing the need of ex ternal input from o ther observations.

The full-sky maps p roduced by Planck will have a signal-to -noise ratio
much larg er than 1: this means that Planck’s maps will be real pictures of
the Universe at r ecombination. This will allow the accurate investigation o f
the physical processes which affect the CMB statistics beyond the angular
power spectrum, such as small deviations from Gaussianity of the primordial
fluctuations, predicted in some theoretical scenarios.

6 http://as tr o . es tec. es a. nl/ P la nck
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Figure 6.8. ESA’s Planck Satellite.

6.5 Conclusions

Cosmology has developed into a fully mature science. The parameters of the big
bang model are now known with great accuracy and the constraints are expected
to get tighter in the future. Inflation has not been falsified and its main predictions
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Table 6.3. Estimated performance of Planck instruments.

Instrument LFI HFI

Detector technology HEMT Bolometers
Detector temperature 20 K 0.1 K
Cooling requirements Active Active
Central frequency (GHz) 30 44 70 100 143 217 353 545 857
Bandwidth (GHz) 6 8.8 14 33 47 72 116 180 283
Angular resolution (FWHM, arcminutes) 33 24 14 9.2 7.1 5 5 5 5
Sensitivity (temperature) (µK per pixel) 2.0 2.7 4.7 2.0 2.2 4.8 14.7 147 6700
Sensitivity (polarization) (µK per pixel) 2.8 3.9 6.7 — 4.2 9.8 29.8 — —
Number of unpolarized detectors 0 0 0 4 4 4 4 4 4
Number of polarized detectors 4 6 12 0 8 8 8 0 0
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are strikingly consistent with observations. The results obtained using completely
different cosmological probes are in remarkable agreement among themselves, as
well as with theoretical predictions. Nonetheless, many fundamental questions
are still open [29]. The pace of experimental and theoretical progress, however,
does not seem to be close to a halt.
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7.1 Introduction

One of the main achievements of physics is certainly the reduction of all forces in
Nature, no matter how diverse they might appear at first sight, to four fundamental
types: gravitational, electromagnetic, weak and strong. The last three, in
particular, are nicely described by the standard model, a Yang–Mills gauge
theory where the gauge group SU(2)L × U(1)Y × SU(3)QCD is spontaneously
broken to U(1)em × SU(3)QCD. A gauge theory is a generalization of Maxwell’s
theory of electromagnetism whose matrix-valued potentials satisfy nonlinear field
equations even in the absence of matter and the corresponding gauge bosons
are the quanta associated with their wave modes. For instance, the W and Z
bosons, quanta of the corresponding Wµ and Zµ gauge fields, are charged under
one or more of the previous gauge groups and are, thus, mutually interacting, an
important feature well reflected by their nonlinear field equations. The other key
ingredient of the standard model, the spontaneous breaking of SU(2)L × U(1)Y
to U(1)em, is a sort of Meissner effect for the whole of space time that is held
responsible for screening the weak force down to very short distances. It relies on
a universal low-energy description of the phenomenon in terms of scalar modes
and, therefore, the search for the residual Higgs boson (or, better, Brout–Englert–
Higgs or BEH boson) is perhaps the key effort in experimental particle physics
today. Whereas the resulting dynamics is very complicated, the standard model
is renormalizable and this feature allows reliable and consistent perturbative
analyses of a number of quantities of direct interest for particle physics. These
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have now been tested by very precise experiments, as we have heard in several
Moriond talks and, therefore, leaving aside the BEH boson that is yet to be
discovered, a main problem today is ironically the very good agreement between
the current experiments and the standard model, with the consequent lack of clear
signals for new physics in this domain.

Despite the many successes of this framework, a number of aesthetic and
conceptual issues have long puzzled the theoretical physics community: in many
respects, the standard model does not have a compelling structure, while gravity
cannot be incorporated in a satisfactory fashion. In fact, gravity differs in crucial
respects from the other fundamental forces, since it is very weak and plays no
role in atomic and nuclear physics: for instance, the Newtonian attraction in a
hydrogen atom is lower than the corresponding Coulomb force by an astonishing
factor—42 orders of magnitude. Moreover, the huge ratio between Fermi’s
constant GF and Newton’s constant GN that determines the strength of the weak
and gravitational interactions at low energies, GF/GN ∼ 1035

�
2c−2, poses by

itself a big puzzle, usually called the hierarchy problem: it is unnatural to have
such a large number in a fundamental theory and, in addition, virtual quantum
effects in the vacuum mixing the different interactions would generally make such
a choice very unstable. Supersymmetry, an elegant symmetry between boson
and fermion modes introduced in this context by J Wess and B Zumino in the
early 1970s, can alleviate the problem by stabilizing the hierarchy but does not
eliminate the need for such unnatural constants. It also predicts the existence of
Fermi and Bose particles degenerate in mass and, therefore, it cannot be an exact
feature of our low-energy world, while attaining a fully satisfactory picture of
supersymmetry breaking is a major challenge in present attempts.

In sharp contrast with the other three fundamental forces, Newtonian gravity
is purely attractive so that, despite its weakness in the microscopic realm, it
dominates the large-scale dynamics of our universe. General relativity encodes
these infrared properties in a very elegant way and, taken at face value as a
quantum theory, it would associate with the gravitational interaction an additional
fundamental carrier, the graviton, that would be on the same footing as the
photon, the gluons and the intermediate W and Z bosons responsible for the weak
interaction. The graviton would be a massless spin-2 particle, and the common
tenet is that its classical Hertzian waves have escaped direct detection for a few
decades only due to their feeble interactions with matter. Unlike standard model
interactions, however, general relativity is not renormalizable, essentially because
the gravitational interaction between point-like carriers that, as we shall see in
more detail at the end of section 7.2, is measured by the effective coupling

αN(E) ∼ GN E2/�c5 (7.1)

grows rapidly with energy, becoming strong at the Planck scale EPl ≈
1019 GeV, defined so that αN(EPl) ≈ 1. This scale, widely beyond our
means of investigation if not of imagination itself, is, in principle, explored by
virtual quantum processes and, as a result, unpleasant divergences arise in the
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quantization of general relativity that, in modern terms, seems to provide, at most,
an effective description of gravity at energies well below the Planck scale. This is
the ultraviolet problem of Einstein gravity and this state of affairs is not foreign.
Rather, it is somewhat reminiscent of the way in which the Fermi theory describes
the weak interactions well below the mass scale of the intermediate bosons,
EW ≈ 100 GeV, where the effective Fermi coupling αF(E) ∼ GF E2/�3c3

becomes of order one. It is important to keep in mind that this analogy, partial
as it may be, lies at the heart of the proposed link between string theory and the
fundamental interactions.

String theory provides a rich framework for connecting gravity to the other
forces and, indeed, it does so in a way that has the flavour of the modifications
introduced by the standard model in the Fermi interaction: at the Planck scale new
states appear, in this case actually an infinity of them, that result in an effective
weakening of the gravitational force. This solves the ultraviolet problem for four-
dimensional gravity but the resulting picture, still far from complete, raises a
number of puzzling questions that still lack a proper answer and which are, thus,
actively investigated by many groups. One long-appreciated surprise, of crucial
importance for the ensuing discussion, is that string theory, in its more popular,
or more tractable, supersymmetric version, requires that our spacetime include
six additional dimensions. Despite the clear aesthetic appeal of this framework,
however, let us stress that, in dealing with matters that could be so far beyond
the currently accessible scales, it is fair and wise to avoid untimely conclusions,
keeping also an eye on other possibilities. These include a possible thinning
of the spacetime degrees of freedom around the Planck scale, that would solve
the ultraviolet problem of gravity in a radically different fashion. For the Fermi
theory, this solution to its ultraviolet problem would assert the impossibility of
processes entailing energies or momenta beyond the weak scale. While this is
clearly not the case for weak interactions, we have no fair way to exclude that
something of this sort could actually take place at the Planck scale, on which we
have currently no experimental clues. This can be regarded as one of the key
points of the canonical approach to quantum gravity, long pursued by a smaller
community of experts in general relativity.

With this proviso, we can return to string theory, the main theme of our
discussion. Ideally, one should demand from it two characteristics: some sort
of uniqueness, in order to make such a radical departure from the standard
model, a four-dimensional field theory of point particles, more compelling and
some definite path for connecting it to the low-energy world. The first goal has
been achieved, to a large extent, in the last decade after the five supersymmetric
string models, usually called type IIA, type IIB, heterotic SO(32) (or, for brevity,
HO), heterotic E8 × E8 (or, for brevity, HE) and type I, have been argued to
be equivalent as a result of surprising generalizations of the electric magnetic
duality of classical electrodynamics. Some of these string dualities are nicely
suggested by perturbative string theory and, in fact, can also connect other non-
supersymmetric ten-dimensional models to the five superstrings, while others
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Figure 7.1. The five ten-dimensional superstring theories are dual to one another. The bold
full lines denote perturbative dualities, while the broken ones indicate non-perturbative
ones. At strong coupling, both type IIA and heterotic E8 ×E8 strings develop an additional
large dimension, a circle (S1) and an interval (I1) respectively. Therefore, they are both
described by an 11-dimensional theory but this bears no direct relation to strings.

rest on the unique features of ten-dimensional supergravity. Supergravity is an
elegant extension of general relativity, discovered in the mid-1970s by S Ferrara,
D Z Freedman and P van Nieuwenhuizen, that describes the effective low-energy
dynamics of the light superstring modes, where additional local supersymmetries
require corresponding gauge fields, the gravitini, and bring about, in general,
other matter fields. In ten dimensions, supergravity is fully determined by
the type of supersymmetry involved, (1,0), (1,1) or (2,0), where the numbers
count the (left and right) Majorana–Weyl ten-dimensional supercharges and,
in the first case, by the additional choice of a Yang–Mills gauge group and
this rigid structure allows one to make very strong statements 1. The end
result is summarized in the duality hexagon of figure 7.1, where the bold
links rest on perturbative string arguments, while the broken ones reflect non-
perturbative features implied by ten-dimensional supergravity. The resulting
picture, provisionally termed ‘M-Theory’, has nonetheless a puzzling feature: it
links the ten-dimensional superstrings to the eleven-dimensional Cremmer–Julia–
Scherk (CJS) supergravity, that can be shown to bear no direct relation to strings!

An additional vexing problem is that the reduction from ten dimensions to
our four-dimensional spacetime entails a deep lack of predictivity for the low-
energy parameters that depend on the size and shape of the extra dimensions.
This fact reflects the absence of a global minimum principle for gravity, similar to

1 This counting is often a source of confusion: in four dimensions a Weyl spinor has two complex,
or four real, components, while in ten dimensions the corresponding minimal Majorana–Weyl spinor
has 16 real components, four times as many. Thus, the minimal (1,0) ten-dimensional supersymmetry
is as rich as � = 4 in four dimensions, while a similar link holds between the (1,1) and (2,0) cases
and � = 8 in four dimensions.
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those that determine the ground states of a magnet in a weak external field below
its Curie temperature or the spontaneous breaking of the electroweak symmetry in
the standard model and represents a stumbling block in all current approaches that
aim at deriving our low-energy parameters from string theory. It has long been
hoped that a better understanding of string dynamics would help in bypassing
this difficulty but, to date, no concrete progress has been made on this crucial
issue. Thus, ironically, by what we currently understand, string theory appears
to provide a unique answer to the problem of including gravity in the standard
model but the four-dimensional remnants of this uniqueness are at least classes
of theories. Supersymmetry again has a crucial effect on this problem, since it
basically stabilizes the internal geometry, much along the lines of what we have
seen for the hierarchy between the electroweak and Planck scales but, as a result,
the sizes and shapes (moduli) of the extra dimensions are apparently arbitrary.
This is the moduli problem of supersymmetric vacua, a problem indeed, since the
resulting low-energy parameters generally depend on the moduli. However, the
breaking of supersymmetry, a necessary ingredient to recover the standard model
at low energies if we are to describe Fermi and Bose fields of different masses,
tends to destabilize the background spacetime. The end result is that, to date,
although we know a number of scenarios to break supersymmetry within string
theory, that we shall briefly review in section 7.5, we have little or no control on
the resulting spacetimes once quantum fluctuations are taken into account.

The following sections are devoted to some key issues raised by the extension
from the standard model to string theory, in an attempt to bring some of the
main themes of current research to the attention of the interested reader, while
using as starting points basic notions of electrodynamics, gravitation and quantum
mechanics.

In a similar spirit, we are also happy to contribute to the Proceedings of the
2002 SIGRAV School, where part of this material was presented in a lecture given
by the first author.

7.2 From particles to fields

The basic tenet from which our discussion may well begin is that all matter
is apparently made of elementary particles, while our main theme will be to
illustrate why this may not be the end of the story. Particles exchange mutual
forces, and the Coulomb force between a pair of static point-like charges q1 and
q2,

|FC| ∼ |q1q2|
r2

(7.2)

with an intensity proportional to their product and inversely proportional to the
square of their mutual distance, displays a remarkable similarity to the Newton
force between a pair of static point-like masses m1 and m2,

|FN | ∼ |GNm1m2|
r2 . (7.3)
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Actually, it has long been found more convenient to think of these basic
forces in two steps: some ‘background’ charge or mass distribution affects the
surrounding space creating a field that, in its turn, can affect other ‘probe’ charges
or masses, sufficiently small not to perturb the background significantly. In the
first case, the classical dynamics is encoded in the Maxwell equations that relate
the electric field E and the magnetic field B to electric charges and currents and,
as a result, both fields satisfy in vacuum wave equations of the type

1

c2

∂2φ

∂ t2
− ∇2φ = 0. (7.4)

These entail retardation effects due to the finite speed c with which
electromagnetic waves propagate and as first recognized by Lorentz and Einstein,
provide the route to special relativity.

With gravity, the situation is more complicated, since the resulting field
equations are highly nonlinear. According to Einstein’s general relativity, the
gravitational field is a distortion of the spacetime geometry that replaces the
Minkowski metric ηµν with a generic metric tensor gµν , used to compute the
distance between two nearby points as

ds2 = gµν(x) dxµ dxν. (7.5)

Material bodies follow universally curved trajectories that reflect the distorted
geometries, while the metric gµν satisfies a set of nonlinear wave-like equations
where the energy–momentum of matter appears as a source. In fact, the nonlinear
nature of the resulting dynamics reflects the fact that the gravitational field carries
energy and is, therefore, bound to act as its own source. These observations extend
a familiar fact: in the local uniform gravitational field g near the earth ground,
Newtonian bodies fall according to

mia = mg g (7.6)

and the equality of the inertial and gravitational masses mi and mg makes this
motion universal. The resulting ‘Equivalence Principle’ is well reflected in the
distorted spacetime geometry that has inevitably a universal effect on test bodies.
The modification in (7.5) cannot be the whole story, however, since a mere change
of coordinates can do this to some extent, a simple example being provided by
the transition to spherical coordinates in three-dimensional Euclidean space, that
turns the standard Euclidean metric

ds2 = dx2 + dy2 + dz2 (7.7)

into
ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2. (7.8)

This simple example reflects a basic ambiguity met when describing the
gravitational field via a metric tensor, introduced by the freedom available in the
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choice of a coordinate system. Strange as it may seem, this is but another, if
more complicated, instance of the ambiguity met when describing the Maxwell
equations in terms of the potentials A and �, defined via

B = ∇ × A E = −∇� − 1

c

∂ A
∂ t

(7.9)

a familiar fact of classical electrodynamics. This ambiguity, in the form of gauge
transformations of parameter �,

A → A + ∇� � → � − 1

c

∂�

∂ t
(7.10)

does not affect measurable quantities like E and B. A suitable combination
of derivatives of gµν , known as the Christoffel connection 

µ
νρ , is the proper

gravitational analogue of the electrodynamic potentials A and �. Note the
crucial difference: in gravity the potentials are derivatives of the metric field,
a fact that has very important consequences, since it essentially determines
equation (7.1). In a similar fashion, the gravitational counterparts of the E and
B fields can be built from the Riemann curvature tensor Rµ

νρσ , essentially a curl
of the Christoffel connection 

µ
νρ , that thus contains second derivatives of gµν .

Summarizing, gravity manifests itself as a curvature of the spacetime geometry
that falling bodies are bound to experience in their motion.

Note that equation (7.10) can also be cast in the equivalent form:

A → A + �c

iq
e−iq�/�c∇eiq�/�c � → � − �

iq
e−iq�/�c ∂

∂ t
eiq�/�c (7.11)

a rewriting that has a profound meaning, since it is telling us that, in
electrodynamics, the effective gauge parameter is a pure phase,

β = eiq�/�c. (7.12)

Quantum mechanics makes this interpretation quite compelling, as can be seen by
the following simple reasoning. In classical mechanics, the effect of electric and
magnetic fields on a particle of charge q is described by the Lorentz force law,

F = q

(
E + 1

c
v × B

)
(7.13)

while quantum mechanics makes use of the Hamiltonian H or the Lagrangian
L, from which this force can be obtained by differentiation. Thus, H and L
are naturally bound to involve the potentials and so does the non-relativistic
Schrödinger equation

− �
2

2m

(
∇ − iq

�c
A
)2

ψ + q�ψ = i�
∂ψ

∂ t
(7.14)
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that maintains its form after a gauge transformation only provided the
wavefunction ψ transforms as

ψ → e(iq/�c)�ψ (7.15)

under the electromagnetic gauge transformation (7.11), thus leaving the
probability density |ψ|2 unaffected. Note that the electromagnetic fields can also
be recovered from commutators of the covariant derivatives in (7.14): for instance[

∂i − iq

�c
Ai , ∂ j − iq

�c
A j

]
= − iq

�c
(∂i A j − ∂ j Ai ) = − iq

�c
εi j k Bk . (7.16)

If special relativity is combined with quantum mechanics, one is inevitably
led to a multi-particle description: quantum energy fluctuations �E ∼ mc2 can
generally turn a particle of mass m into another and, therefore, one cannot forego
the need for a theory of all particles of a given type. Remarkably, the field concept
is naturally tailored to describe particles, for instance all the identical photons in
nature and it does so in a relatively simple fashion, via the theory of the harmonic
oscillator. A wave equation in fact emerges, from the continuum limit of coupled
harmonic oscillators, a basic fact nicely reflected by the corresponding normal
modes, as can be seen letting

�(x, t) = eik·x f (t) (7.17)

in equation (7.4). Quantum mechanics associates with the resulting harmonic
oscillators

d2 f

dt2
+ c2k2 f = 0 (7.18)

equally spaced spectra of excitations, that represent identical particles, each
characterized by a momentum p = �k, the photons in the present example. The
allowed energies are

En(k) = �c|k|(n + 1
2 ) (n = 0, 1, . . .) (7.19)

and the equally spaced spectra allow an identification of the nth excited state with
a collection of n photons. Note the emergence of the zero-point energy 1

2�c|k|,
a reflection of the uncertainty principle to which we shall return in the following.
Let us add that a similar reasoning for fermions would differ in two respects. First,
the Pauli principle would only allow n = 0, 1 for each k, while, for the general
case of massive fermions with momentum p = �k, the allowed energies would
be, in general,

E =
√

c2 p2 + m2c4(n − 1
2 ) (n = 0, 1). (7.20)

Note the negative zero-point energy which should be compared with the positive
zero-point energy for bosons. Incidentally, equal numbers of boson and fermion
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types degenerate in mass would result in an exactly vanishing zero-point energy,
a situation realized in models with supersymmetry.

This brings us naturally to a brief discussion of the cosmological constant
problem, a wide mismatch between macroscopic and microscopic estimates of the
vacuum energy density in our universe. Note that, in the presence of gravity, an
additive contribution to the vacuum energy has sizeable effects: energy, just like
mass, gives rise to gravitation and, as a result, a vacuum energy appears to endow
the universe with a corresponding average curvature. Macroscopically, one has a
time scale tH ∼ 1/H ∼ 1017 s, where the Hubble constant H characterizes the
expansion rate of our universe, and a simple dimensional argument associates to it
an energy density ρM ∼ H 2c2/GN. One can attempt a theoretical estimate of this
quantity, following Ya B Zel’dovic, taking into account the zero-point energies
of the quantum fields that describe the types of particles present in nature. A
quantum field, however, even allowing no modes with wavelengths below the
Planck length �Pl = �c/EPl ≈ 10−33 cm, the Compton wavelength associated
with the Planck scale where, as we have seen, gravity becomes strong, would
naturally contribute via its zero-point fluctuations a Planck energy per Planck
volume, or ρm ∼ E4

Pl/(�c)3. Using equation (7.1) to relate GN to EPl, the
ratio between the theoretical estimate of the vacuum energy density and its actual
macroscopic value is then

ρM

ρm
∼

(
�H

EPl

)2

≈ 10−120. (7.21)

This is perhaps the most embarrassing failure of contemporary physics and,
to many theorists, it has the flavour of the black body problem, where a
similar mismatch led eventually to the formulation of quantum mechanics. In a
supersymmetric world, the complete microscopic estimate would give a vanishing
result since, as we have seen, fermions and bosons give opposite contributions to
the vacuum energy. Still, with supersymmetry broken at a scale Es in order to
allow for realistic mass differences δM ∼ Es/c2 between bosons and fermions,
one would essentially recover the previous estimate but for the replacement of
EPl with the supersymmetry breaking scale Es, so that, say, with Es ∼ 1 TeV,
the ratio in (7.21) would become about 10−88, with an improvement of about
30 orders of magnitude. These naı̈ve considerations should suffice to motivate
the current interest in the search for realistic supersymmetric extensions of the
standard model with the lowest scale of supersymmetry breaking compatible with
current experiments where, if we also account for the contribution of gravity that
here we ignored for the sake of simplicity, more sophisticated cancellations can
allow the bound to be reduced much further. We should stress, however, that no
widely accepted proposal exists today, with or without supersymmetry or strings,
to resolve this clash between theoretical physics and the observed large-scale
structure of our universe.

We have thus reviewed how all identical particles of a given type can be
associated with the normal modes of a single field. While these are determined by
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the linear terms in the field equations, the corresponding nonlinear terms mediate
transformations of one particle species into others. This ‘micro-chemistry’, the
object of particle physics experiments, is regulated by conservation laws and, in
fact, the basic reaction mechanisms in the standard model are induced by proper
generalizations of the electromagnetic ‘minimal substitution’ ∇ → ∇−(iq/�c)A.
The basic idea, as formulated by Yang and Mills in 1954, leads to the nonlinear
generalization of electrodynamics that forms the conceptual basis of the standard
model and can be motivated in the following simple terms. As we have seen, the
electromagnetic gauge transformation

U = eiq�/�c (7.22)

is determined by a pure phase that can be regarded as a one-by-one unitary matrix,
as needed, say, to describe the effect of a rotation around the z-axis of a three-
dimensional Euclidean space on the complex coordinate x + iy. Thus, one might
well reconsider the whole issue of gauge invariance for an arbitrary rotation or,
more generally, for n × n unitary matrices U . What would happen then? First,
the electrodynamic potentials would become matrices themselves, while a gauge
transformation would act on them as

∇ − iq

�c
A → U

(
∇ − iq

�c
A
)

U†. (7.23)

Moreover, the analogues of the electric and magnetic fields would become
nonlinear matrix-valued functions of the potentials, as can be seen repeating the
derivation in (7.16) for a matrix potential Aµ, for which[

∂µ − iq

�c
Aµ, ∂ν − iq

�c
Aν

]
= − iq

�c

(
∂µ Aν − ∂ν Aµ − iq

�c
[Aµ, Aν]

)

= − iq

�c
Fµν . (7.24)

Note that the matrix (Aµ)
j
i and the Christoffel symbol (µ)

ρ
ν are actually very

similar objects, apart from the fact the latter is not an independent field but a
combination of derivatives of gµν .

The resulting Yang–Mills equations[
∂µ − iq

�c
Aµ, Fµν

]
= 4π

c
J ν (7.25)

to be compared with the more familiar Maxwell equations of classical
electrodynamics, indeed contain nonlinear (quadratic and cubic) terms that
determine the low-energy mutual interactions of gauge bosons. For instance, the
familiar Gauss law of electrodynamics becomes

∇ · E − iq

�c
(A · E − E · A) = 4πρ (7.26)
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that cannot be written in terms of E alone. Note also that the Yang–Mills
analogues of E and B are not gauge invariant. Rather, under a gauge
transformation,

Fµν → e(iq/�c)�Fµνe−(iq/�c)� (7.27)

so that the actual observables are more complicated in these non-Abelian theories.
An example is, for instance, tr(Fµν Fµν), while a more sophisticated, non-local
one, is the Wilson loop

trP exp

(
iq

�c

∮
γ

Aµ dxµ

)
(7.28)

where P denotes path ordering, a prescription to order the powers of Aµ

according to their origin along the path γ . This non-Abelian generalization of the
Aharonov–Bohm phase is of key importance in the problem of quark confinement.

The standard model indeed includes fermionic matter in the form of quark
and lepton fields, whose quanta describe three families of (anti)particles but only
the leptons are seen in isolation, so that the non-Abelian SU(3) color force is held
responsible for the permanent confinement of quarks into neutral composites, the
hadrons. The basic interactions of quarks and leptons with the gauge bosons
are simple to characterize: as we anticipated, they are determined by minimal
substitutions of the type ∇ → ∇ − (iq/�c)A but some of them violate parity or,
in more technical language, are chiral. This fact introduces important constraints
due to the possible occurrence of anomalies quantum violations of classical
conservation laws. To give an idea of the difficulties involved, it suffices to
consider the Maxwell equations in the presence of a current,

∂µFµν = J ν. (7.29)

Consistency requires that the current be conserved, i.e. that ∂µ Jµ = 0 but,
in the presence of parity violations, quantum effects can also violate current
conservation, making (7.29) inconsistent. Remarkably, the fermion content of
the standard model passes this important test, since all potential anomalies cancel
among leptons and quarks.

Another basic feature of the standard model is related to the spontaneous
breaking of the electroweak symmetry, responsible for screening the weak force
down to very short distances or, equivalently, for the masses of the W± and Z
bosons. This is achieved by the BEH mechanism, whereby the whole of spacetime
hosts a quartet of scalar fields responsible for the screening. Making a vector
massive costs a scalar field which provides the longitudinal polarization of the
corresponding waves, so that three scalars are eaten up to build the W+, W−
and Z bosons, while a fourth massive scalar is left over: this is the Higgs or,
more properly, the BEH particle, whose discovery would be a landmark event in
particle physics.

After almost three decades, we are still unable to study the phenomenon of
quark confinement in fully satisfactory terms but we have a host of numerical
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Figure 7.2. The first diagram shows a typical contribution to the self-energy of the
electron. The virtual particle/anti-particle pair behaves as a small electric dipole, thereby
screening the electron charge. Turning to quarks and the strong interaction, in quantum
chromodynamics the diagrams of the first kind (where now the wavy line denotes a gluon,
rather than a photon) are accompanied by additional ones of the second kind, since the
gluons are themselves charged. A direct calculation shows that the anti-screening effect
wins, leading to asymptotic freedom.

evidence and simple semi-quantitative arguments to justify our expectations.
Thus, in quantum electrodynamics (QED) (see figure 7.2), the uncertainty
principle fills the actual vacuum with virtual electron–positron pairs, vacuum
fluctuations that result in a partial screening of a test charge. This, of course, can
also radiate and absorb virtual photons that, however, cannot affect the picture
since they are uncharged. However, the Yang–Mills vacuum (see figure 7.2) is
dramatically affected by the radiation of virtual gauge bosons that are charged
and tend to anti-screen a test charge. The end result of the two competing effects
depends on the relative weight of the two contributions and the colour force
in quantum chromodynamics (QCD) is actually dominated by anti-screening.
This has an impressive consequence, known as asymptotic freedom: quark
interactions become feeble at high energies or short distances, as reflected in the
experiments on deep inelastic scattering. A naı̈ve reverse extrapolation would
then appear to justify intense interactions in the infrared, compatibly with the
evident impossibility of finding quarks outside hadronic compounds but no simple
quantitative proof of quark confinement has been attained to date along these
lines. On the contrary, even if the weak interactions are also described by a Yang–
Mills theory, no subtle infrared physics is expected for them, compatible with the
fact that leptons are commonly seen in isolation: at scales beyond the Compton
wavelength of the intermediate bosons, �W ∼ 10−16 cm, the resulting forces are,
in fact, screened by the BEH mechanism!

While more can be said about the standard model, we shall content ourselves
with these cursory remarks, with an additional comment on the nature of the
spontaneous breaking. This ascribes the apparent asymmetry between, say, the
short-range weak interactions and the long-range electromagnetic interactions to
an asymmetry of the vacuum, much in the same way as the magnetization of a bar
can be related to a proper hysteresis. As a result, although hidden, the symmetry
is still present and manifests itself in full power in high-energy virtual processes,
making the theory renormalizable like QED, a crucial result recognized by the
Nobel prize awarded to G ’t Hooft and M Veltman in 1999. A by-product of the
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Figure 7.3. At energi es si gni fi cant l y bel ow 100 GeV, bet a-decay i s wel l descri bed by
a f our- f e r m i on i nt er act i on. H ow eve r, at hi gher e nergi e s, t he i nt er act i on i s r esol ve d or
‘ s mear ed out ’ by t he exchange of a W boson.

BEH m ech an ism is a sim p le r e latio n b etween th e Fer m i co n stan t an d , say, th e W
mass MW

GF ∼ �
3α

cM2
W

(7.30)

with α a d imensionless number o f the order o f the QED fine-structu re constant.
This again reflects the fact th at th e weak forces are completely screened beyond
th e Compton wavelength o f their carriers, λW ∼ �/cMW , but an equivalent, rather
suggestive way of statin g this result is to note that the growth of th e effective fine-
structure functio n

αF( E) ∼ 
G F E 2

�3c 3 
(7.31)

actually stops at the electroweak scale EW ≈
√
�3c 3/

√
GF to leave r o o m f o r a n

essen tially co n stan t co u p lin g . Th is tr an sitio n r esu lts f r o m th e em erg e n c e o f n ew
degrees of freedom that effectively smear out th e lo cal f o u r- Fer m i in ter actio n in to
QED-like exchange diagrams, as in figure 7 .3.

Given these consid erations, it is temptin g and natu ral to try to repeat th e
argument for gravity, constructing the corresponding dimensionless coupling,

αN(E) ∼ GN E2

�c5
. (7.32)

The relevant scale is now the Planck scale EPl ≈ 1019 GeV but the problem is
substantially subtler, since now energy itself is to be spread and this is where
strings come in to play. Accordin g to figures 7.4 and 7.5, a simple, if rath er
crude, argument to this effect is that if a pair of point masses experiencing a hard
gravitational collision are replaced with strings of length �s, asymptotically only
a fraction of their energies is effective in the interaction, so that αN(E) actually
saturates to a finite limiting value, GN�/�

2
s c3. This simple observation can be

taken as the key motivation for strings in this context and, indeed, a detailed
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Figure 7.4. A hard gravitational collision can be softened if point particles are replaced
by strings of length �s. The energy is then spread over their length, while at high
energies the effective gravitational coupling αN(E) = GN E2/�c5 is replaced by
αN(E) × ((�c/E)/�s)

2, according to the fraction of the energy effective in the collision.

lS

Figure 7.5. Replacing point particles with strings, a graviton three-point interaction (left) is
‘smeared’ to such an extent that, in the resulting three-string vertex (right), even a localized
interaction point can no longer be found.

analysis shows that the ultraviolet problem of gravity is absent in string theory. A
subtler issue is to characterize what values of �s one should actually use, although
naı̈vely the previous argument would tend to identify �s with the Planck length
�Pl ≈ 10−33 cm.

7.3 From fields to strings

This brings us naturally to strings that clearly come in two varieties, open or
closed. It is probably quite familiar that an ordinary vibrating string has an
infinity of harmonics that depend on the boundary conditions at its ends but whose
frequencies are essentially multiples of a fundamental tone. In a similar fashion,
a single relativistic string has an infinity of tones, naı̈vely related to an infinity of
masses according to

m2 ∼ Nω2 (N ≥ 1) (7.33)

with N an integer and, thus it apparently describes an infinity of massive particle
species. There is a remarkable surprise, however: the dynamics of strings requires
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a higher-dimensional Minkowski space and typically turns the previous relation
into

m2 ∼ (N − 1)ω2 (7.34)

so that string spectra actually include massless modes, as needed to describe long-
range forces. A more detailed analysis would reveal that open strings include
massless vectors, while closed strings include massless spin-2 fields. Therefore,
not only is one softening the gravitational interactions by spreading mass or
energy but one is also recovering, without further ado, gauge bosons and gravitons
from the string modes.

A closer look would reveal that strings can also describe spacetime fermions,
with the chiral interactions needed in the standard model. Their consistency,
however, rests on a new mechanism, discovered by M B Green and J H Schwarz,
that supplements the ordinary anomaly cancellations at work in the standard
model with the contributions of new types of particles. In their simplest
manifestation, these have to do with a two-form field, a peculiar generalization of
the electrodynamic potential Aµ bearing an antisymmetric pair of indices, so that
Bµν = −Bνµ. The corresponding field strength, obtained as in electrodynamics
from its curl, is, in this case, the three-form field Hµνρ = ∂µ Bνρ+∂ν Bρµ+∂ρ Bµν .
Two-form fields have a very important property: their basic electric sources are
strings, just like the basic electric sources in the Maxwell theory are particles.
Thus, in retrospect, a Bµν field is a clearcut signature of an underlying string
extension. A field of this type is always present in the low-energy spectra of string
models but is absent in the CJS supergravity that, for this reason, as stressed in
the Introduction, bears no direct relation to strings.

We have already mentioned that there are apparently several types of string
models, all defined in spacetimes with a number of extra dimensions. At present,
the only direct way to describe their interactions is via a perturbative expansion.
Truly enough, this is essentially the case for the standard model as well but for
strings we still somehow lack a way to go systematically beyond perturbation
theory. There is a framework, known as string field theory, vigorously pursued
over the years by a small fraction of the community and, most notably, by A Sen
and B Zwiebach, that is starting to produce interesting information on the string
vacuum state but it is still a bit too early to give a fair assessment of its real
potential in this respect. Indeed, even the very concept of a string could well turn
out to be provisional, a convenient artifice to describe in one shot an infinity of
higher-spin fields, much in the spirit of how a generating function in mathematics
allows one to describe conveniently in one shot an infinity of functions and, in
fact, string theory appears, in some respect, as a BEH-like phase of a theory with
higher spins 2. This is another fascinating, difficult and deeply related subject,
pursued over the years mostly in Russia and mainly by E Fradkin and M Vasiliev.

2 The standard model contains particles of spin-1 (the gauge bosons), 1
2 (the quarks and leptons) and

0 (the BEH particle) and possibly of spin-2 (the graviton), while the massive string excitations have
arbitrarily high spins.
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String theory allows two types of perturbative expansions. The first is
regulated by a dimensionless parameter, gs, that takes the place in this context
of the fine-structure constants present in the standard model, while the second is a
low-energy expansion, regulated by the ratio between typical energies and a string
scale Ms ∼ �/c�s related to the ‘string size’ �s. In the following, we shall use
the two symbols �s and α′ = �2

s interchangeably to characterize the string size.
A key result of the 1970s, due mainly to J Scherk, J H Schwarz and T Yoneya, is
that in the low-energy limit the string interactions embody both the usual gauge
interactions of the standard model and the gravitational interactions of general
relativity. Thus, to reiterate, string theory embodies, by necessity, long-range
electrodynamic and gravitational quanta, with low-energy interactions consistent
with the Maxwell (or Yang–Mills) and Einstein equations.

The extra dimensions require that a spacetime version of symmetry breaking
be at work to recover our four-dimensional world. The resulting framework draws
from the original work of Kaluza and Klein, and has developed into the elegant
and rich framework of Calabi–Yau compactifications but some of its key features
can be illustrated by a simple example. To this end, let us consider a massless
scalar field φ that satisfies, in five dimensions, the wave equation

1

c2

∂2φ

∂ t2 − ∇2φ − ∂2φ

∂y2 = 0 (7.35)

where the fifth coordinate has been denoted by y. Now suppose that y lies on
a circle of radius R, so that y ∼ y + 2π R or, equivalently, impose periodic
boundary conditions in the y-direction. One can then expand φ in terms of a
complete set of eigenfunctions of the circle Laplace operator, plane waves with
quantized momenta, writing

φ(x, y) =
∑
n∈Z

φn(x)einy/R. (7.36)

Plugging this expansion into the Klein–Gordon equation shows that, from the
four-dimensional viewpoint, the mode coefficients φn(x) describe independent
fields with masses n/R, satisfying

1

c2

∂2φn

∂ t2 − ∇2φn + n2

R2 φ = 0. (7.37)

At low energies, where the massive modes are frozen, the extra dimension is thus
effectively screened and inaccessible, since only quanta of the zero-mode field
can be created. Simple as it is, this example suffices to show that the spectrum of
massive modes reflects the features of the internal space, in that it depends on the
radius R. By a slight complication, for instance playing with anti-periodic modes,
one could easily see how even the numbers and types of low-lying modes present
generally reflect the features of the internal space. This is perhaps the greatest
flaw in our current understanding: the four-dimensional manifestations of a given
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Figure 7.6. C ont r a r y t o poi nt par t i c l e s, cl osed st r i ngs can w i nd i n a non- t r ivi a l way ar ound
a c ompact di r ect i on. H e r e w e show, f r om l ef t t o r i ght , t hr ee exampl es of cl osed st r i ngs
w i t h w i ndi ng number s 0, 1 a nd 2, r e spect ivel y.

string and, in particular, the properties o f its light particles are manifold , sin ce
th ey depend on th e size and sh ape o f the ex tra d imensions. Let us stress th at,
while in the electroweak breaking, we dispose o f a clear minimum p rincip le th at
drives th e choice of a vacuum, n o g eneral prin ciple o f this type is available in
th e p resence o f g ravity. Therefore, d espite many efforts over the years, we have,
at present, no clearcut way to make a dynamical choice between th e available
p o ssib ilities a n d , as a r esu lt, we ar e still n o t in a p o sitio n to g ive c lear cu t str in g
p r ed ictio n s f o r low - e n e rg y p ar am eter s. No n e th eless, th ese p o ssib ilities in c lu d e ,
rath er su rprisingly, four-dimensional world s with gauge and matter configurations
along the lines of the standard model, although inheriting chiral interactions from
higher dimensions would naı̈vely appear quite difficult. We may thus be driven to
keep an ey e o n a d iff er en t a n d less attr active p o ssib ility, a s with th e o ld , ill- p o sed
problem, o f d eriv ing, from first p rincip les, th e sizes of th e Keplerian orbits. As
we now understand, these result from accidental initial conditions and a similar
situ atio n f o r th e f o u r- d im en sio n a l str in g vacu u m , w h ile clear ly r a th er d istu r b in g ,
cannot be fairly dismissed at the present time.

Still, in m ov in g to str in g th eo r y as th e p r o p e r f r a m ewo r k to ex ten d th e
standard model, it would b e reassu ring to foresee some sort of uniqueness
in the resulting picture, at least in higher dimensions. Remarkably this was
achieved, to a large extent, by the mid 1990s and we have now good reasons to
believe that all ten-dimensional superstring models are somehow equivalent to one
another. The basic equivalences between the four superstring models of oriented
closed strings, IIA, IIB, heterotic SO(32) and heterotic E8 × E8, and the type I
model of unoriented closed and open strings, usually called string dualities, are
su mmarized in figure 7 .1. The bold links, labelled b y T and � , can b e ex p licitly
established in string perturbation theory, while the additional broken links rely
on non-perturbative arguments that rest on the unique features of the low-energy
ten-dimensional supergravity. We can now comment a bit on the labels, beginning
with the T duality.

When a particle lives in a circle, the de Broglie wave eipx/� can be properly
periodic only if the momentum is quantized in units of the inverse radius R, i.e. if
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p = n�/ R . We h ave already met th e field counterpart of th is property, wh en we
described h ow a m assless five-dimensional field would m anifest itself to a four-
d im e n sio n a l o b ser ve r a s a n in fin ite tower o f m assive field s. A c lo sed str in g can
also be endowed with a centre-of-mass momentu m, quantized for the same reason
in u n its o f 1/ R and, thus, a single strin g spectrum would appear, b y n ecessity, to a
lower-dimensional observer as a tower o f strin g spectra. However, a closed string
can also wrap around th e circle an arbitrary number o f tim es, so that, in fact, a
closed string coordinate admits expansions of th e type

X (σ, τ ) = x + (2α′) m
R

τ + 2 n Rσ

+ i

2

√
2α′ ∑

k �=0

(
αk

k
e−i2k(τ−σ) + α̃k

k
e−i2k(τ+σ)

)
(7.38)

wh ere τ in this contex t, replaces, the ‘proper time’ of particle dynamics while σ
lab e ls th e p o in ts o f th e str in g . No te th at th e th ir d ter m im p lies th a t X (π, τ ) =
X (0, τ ) + 2π n R, as p ertain s to a closed string winding n tim es around a circle.
The spectrum o f the string as seen from the uncompactified dimensions will have
th e f o r m

M 2 = �
2

c 2

(
m 2

R 2 
+ 

n 2 R 2

α′2

)
+ · · ·  (7.39)

where the dots stand for contributions due to the higher frequencies of the string
( see, e.g . eq u a tio n ( 7 . 3 3 ) ) . Wh ile th e fir st ter m in ( 7 . 3 9 ) is fa m iliar f r o m o r d in ar y
quantum mechanics, the second, which, as we have seen, r eflects the possibility of
non-trivial windings, is new and intrinsically ‘stringy’. Notice that equation (7.39)
disp lays a remarkable symmetry: one cannot distinguish so mehow b etween a
string propagating on a circle of radius R and another propagating on a circle
with the ‘dual’ radius α′/R ! We have actually simplified matters to some extent,
since, in general, T -duality affects the fermion spectra of closed strings. Upon
circle compactification, it thus maps the two heterotic models and the two type II
m o d e ls in to o n e an o th e r, p r ov id in g two o f th e b o ld d u a lity lin k s in fig u r e 7 .1 .

The other bold link, labelled by �, reflects an additional peculiarity, the
simultaneous presence of two sets of modes in a closed string (the ‘right-moving’
α and ‘left-moving’ α̃ modes in equation (7.38)). If a symmetry is present
between them, as is the case only for the type IIB model, one can use it to
combine states but string consistency conditions require, in general, that new
sectors emerge. As a result, combining, in this fashion, states of closed strings,
one is generally led to introduce open strings as well. This construction, now
commonly called an orientifold, was introduced long ago by one of the present
authors and was then widely pursued over the years at the University of Rome
‘Tor Vergata’. It links the type IIB and type I models in the diagram also, offering
new perspectives on the issue of string compactification.

The additional broken links in figure 7.1 are harder to describe in simple
terms but can be characterized as analogues, in this context, of the electric–
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magnetic duality of Maxwell’s electrodynamics. I t is indeed well known that,
in th e a b sen ce o f so u r ces, th e electr ic– m a g n e tic d u a lity tr an sf o r m a tio n s E → B
and B → −E are a sy mmetry o f the Maxwell equations:

∇ · E = 0 ∇ × E = −1

c

∂ B
∂ t

∇ · B = 0 ∇ × B = 1

c

∂ E
∂ t 

(7.40)

bu t it is p erhaps less appreciated th at th e symmetry can be ex tended to the general
case, at th e expense o f turning electric charg es and currents into their magnetic
counterparts. Wh ereas these are apparently not present in n ature, Yang–Mills
th eories generically, but not necessarily, p redict th e existence of heav y magnetic
poles, o f m asses M ∼ MW/αe , w ith αe a typical (electric) fine- structure constant.
Th u s, we m ig h t well h ave fa iled to see ex istin g m ag n e tic p o les, d u e to th eir
high masses, about 100 times larg er th an those o f the W and Z bosons! In fact,
QED could also b e formulated in terms of magnetic carriers but, for Qu antu m
Mech an ics, th at ad d s an im p o r tan t d a tu m : th e r esu ltin g m ag n e tic fin e- str u ctu r e
constant αm would b e enormous, essentially th e inverse of th e u su al electric
one. More p recisely, magnetic and electric couplings are not independent bu t
are related by Dirac quantizatio n conditions, so that

αe ∼ 1

αm
(7.41)

an d , th er ef o r e, it is th e sm a lln ess o f αe th at favours the usual electric d escrip tion,
wh ere the actual interactin g electrons and photons are only mild ly different from
the corresponding free quanta, on which our intuition about elementary particles
r e sts.

In string th eory, the ‘electric’ couplin g is actually determin ed by th e vacuum
expectation value (vev) of a ubiquitous massless scalar field, the dilaton (closely
related to the Brans–Dicke scalar, a natural extension of general relativity),
according to

gs = e〈ϕ〉. (7.42)

At this time, we have no direct insight into gs that, in general, could be spacetime
dependent. It is thus interesting to play with these S dualities, that indeed fill
the missing gaps in figure 7.1. A surprise is that both the type IIA and the
E8 × E8 heterotic models develop, at strong coupling, an additional dimension,
invisible in perturbation theory but macroscopic if gs is large enough. The
emergence of the additional dimension brings into the game the CJS supergravity,
the unique supergravity model in 11 dimensions that, however, cannot be directly
related to strings: as we have stressed, it does not contain a Bµν field, although
it does contain a three-index field, Aµνρ , related to corresponding higher-
dimensional solitonic objects, that we shall briefly return to in the next section,
the M2- and M5-branes. This is the puzzling end of the story alluded to in the
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introduction: duality transf ormations of string models, that supposedly describe
th e microscopic d eg rees of freedom of our wo rld, lin k them to a superg ravity
model with no underlying string. This is indeed, in some respect, like ending
up with pions with no clue on the underlying ‘quarks’! This beautiful picture
was contribu ted in the last decade b y many authors, including M Duff, A Font,
P Horava, C M Hu ll, L Ibanez, D Lust, F Quevedo, A Sen, P K Townsend and,
m o st n o tab ly, b y E Witten .

Let u s c o n c lu d e th is sectio n b y str essin g th at a d u a lity is a c o m p lete
equivalence b etween the spectra of two ap p a r e n tly d istin ct th eo r ies. We h ave
met one ex ample o f this phenomenon earlier, wh en we discussed the case o f T
duality: winding modes find a p roper counterpart in momentum modes and vice
versa . N ow, in r elatin g th e h e ter o tic SO( 3 2 ) m o d e l, say, to th e ty p e I str in g , th eir
two sets o f m odes h ave n o way to match d irectly. For instance, a typical open-
string coordinate

X = x + (2α′) m
R

τ + 2 n Rσ + i
√

2α′ ∑
k �=0

αk

k
e−i kτ cos(kσ)  (7.43)

is vastly different from the closed-strin g expansio n met prev iously since, for one
matter, it invo lves a single set of modes. How can a correspondence o f this
type hold? We have already stu mbled o n the basic p rincip le, when we said that
typically Yang–Mills theories also desc ribe magnetic poles. These magnetic poles
are examples o f so lito n s, stable localized blobs of energy th at prov id e apparently
inequivalent descriptions of wave quanta, to which we now turn.

7.4 From strings to branes

A number of field theories admit solitonic solutions, blobs of energy whose shape
is stabilized by nonlinear couplings. A simple example is provided by the ‘kink’
th at in ter p o lates b e tween th e two m in im a o f th e p o ten tial sh own in fig u r e 7 .7 . I t
can be regarded as a model for a wall separating a pair of Curie–Weiss domains
in a ferromagnet. Its stability can be argued by noting that any attempt to deform
it, say, to the constant vacuum φ = a would cost, in one dimension, an energy
of the order of LV (0), where L is the size of the region where the field theory
lives and V (0) is the height of the potential barrier. For a macroscopic size L, this
becomes an infinite separation and the solution is thus stable. Moreover, its energy
density, essentially concentrated in the transition region, results in a finite total
energy, E = m3/12λ, where m denotes the mass of the elementary scalar field,
defined as expanding around one of the minima of the potential, φ = ±a. This
energy defines the mass of the soliton and, as anticipated, blows up in the limit of
small coupling λ. The ’t Hooft–Polyakov monopole works, in three dimensions,
along similar lines: any attempt to destroy it would cost an infinite energy. As
is usually said, these objects are topologically stable and, in fact, their stability
can be ascribed to the conservation of a suitable (topological) charge that, for the

Copyright © 2005 IOP Publishing Ltd.



From strings to branes 167
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Figure 7.7. A scalar field theory in 1 + 1 dimensions (denoting the scalar field as φ(t, x)),
with a potential V (φ) = λ(φ2 − a2)2 (shown on the left) admits a static, finite-energy
solution that interpolates between the two vacua φ = ±a (shown on the right), known as a
‘kink’. Its energy or mass is m3/12λ, where m is the mass of the elementary scalar field.
In the perturbative regime, i.e. for small coupling λ, the kink is, therefore, very heavy.

monopole, is simply its magnetic charge. A further feature of solitons is that their
energy is proportional to an inverse power of a coupling constant, as we have seen
for the kink. This is simple to understand in general terms: the nonlinear nature
of the field equations is essential for the stability of solitons that, therefore, should
disappear in the limit of small coupling!

A localized distribution of energy and/or charge is indeed a modern
counterpart of our classical idea of a particle. It is probably familiar that an
electron has long been modelled in classical electrodynamics, in an admittedly
ad hoc fashion, as a spherical shell with a total charge e and a finite radius a,
associating the resulting electrostatic energy

E ∼ e2

a
(7.44)

with the electron mass. In a similar fashion, the localized energy distribution
of a soliton is naturally identified with a particle, just like an energy distribution
localized along a line is naturally identified with an infinite string, while its higher
dimensional analogues define generalized branes. Thus, for instance, the ‘kink’
describes a particle in 1 + 1 dimensions, a string in 1 + 2 dimensions, where the
energy distribution is independent of a spatial coordinate, and a domain wall or
two-brane in 1 + 3 dimensions, where the energy distribution is independent of
two spatial coordinates. These are, therefore, new types of ‘quanta’, somehow
missed by our prescription of reading particle spectra from free wave equations.
Amusingly enough, one can argue that the two descriptions of particles are
only superficially different, while the whole picture is well fitted with quantum
mechanics. The basic observation is that these energy blobs have typically a
spatial extension

� ∼ �

Mc
(7.45)
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∆ ∆

α∆ α∆

Figure 7.8. An ‘artistic’ impression of a soliton of size �. The broken circle depicts
its Compton wavelength λC ∼ α�, with α a dimensionless fine-structure constant. The
first figure refers to the weak-coupling regime, where α is very small and, as a result,
the Compton wavelength λC is much smaller than the soliton size �. In this regime, the
soliton can be regarded as a classical object. The second figure refers to the strong-coupling
regime, where α is very large and, as a result, the Compton wavelength λC is much larger
than the soliton size �. In this regime, the soliton can be regarded as an ordinary light
quantum without any inner substructure.

where M denotes a typical mass scale associated with a BEH-like phenomenon,
since they basically arise from regions where a transition between vacua takes
place, typically of the order of the Compton wavelength (7.45). In addition, the
energy stored in these regions, that determines the mass of the soliton, is

Msol ∼ M

α
(7.46)

with α a typical fine-structure constant. At weak coupling (small α) we have
quantitative means to explore the phenomenon further, but Msol � M , so that
the Compton wavelength of the soliton is well within its size. In other words, in
the perturbative region the soliton is a classical object. However, in the strong-
coupling limit (large α), the soliton becomes light while its Compton wavelength
spreads well beyond its size, so that its inner structure becomes immaterial: we
are then back to something very similar in all respects to an ordinary quantum.
Solitons are generally interacting objects. For instance, magnetic poles typically
experience the magnetic dual of the usual Coulomb force. This is reflected in
the fact that, being solutions of nonlinear equations, they cannot be superposed.
In special cases, their mutual forces might cancel and then, quite surprisingly,
the corresponding nonlinear field equations allow a superposition of different
solutions. This is a typical state of affairs in supersymmetric theories, realized
when special inequalities, called ‘BPS bounds’, are saturated.
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The T and S dualities discussed in the previous section can also be seen as
maps between ordinary quanta and solitons. The former simpler case involves
the interchange of momentum excitations with winding modes that, as we have
stressed, describe topologically inequivalent closed-string configurations on a
circle, while the latter rests on similar operations involving solitons in spacetime.
These, as in the two examples we have sketched in this section, can be spotted
from the field equations for the low-energy string modes but some of their features
can be discussed in simple, general terms. To this end, let us begin by rewriting
the (1 + 3)-dimensional Maxwell equations (7.40) in covariant notation, while
extending them to the form

∂µ Fµν = 4π

c
J ν

e (7.47)

εµνρσ ∂ν Fρσ = 4π

c
J ν

m (7.48)

where, in addition to the more familiar electric sources Je, we have also
introduced magnetic sources Jm , that affect the Faraday–Neumann–Lenz
induction law and the magnetic Gauss law. Note how a current Jµ

e is naturally
borne by particles, with Jµ

e ∼ quµ in terms of their charge and four-velocity. In
D > 4, however, the ε tensor carries D indices and, consequently, Jm carries, in
general, D − 3 indices, while its sources are extended objects defined via D − 4
Lorentz indices. Thus, a magnetic pole is a particle in four dimensions as a result
of a mere accident. In six dimensions, for instance, the magnetic equations would
become

εµνρστλ∂σ Fτλ = 4π

c
J̃µνρ

m (7.49)

so that, by the previous reasoning, a magnetic pole would bear a pair of indices, as
pertains to a surface. In other words, it would be a two-brane. The argument can
be repeated for a general class of tensor gauge fields, Bµ1...µp+1 , in D dimensions:
their electric sources are p-branes, while the corresponding magnetic sources are
(D − 4 − p)-branes. These tensor gauge fields are typically part of low-energy
string spectra, while the corresponding ‘electric’ and ‘magnetic’ poles show up as
solutions of the complete low-energy equations for the string modes. As we have
seen, they define new types of ‘quanta’ that are to be taken into account: in fact,
‘branes’ of this type are the missing states alluded to at the end of the previous
section!

As stressed by J Polchinski, a peculiarity of string theory makes some of
the ‘branes’ lighter than others in the small-coupling limit and, at the same time,
simpler to study. The first feature is due to a string modification of equation (7.46),
that, for these ‘D-branes’, happens to depend on

√
α ∼ gs, rather than on α, as

is usually the case for ordinary solitons. The second feature is related to the
possibility of defining string theory in the presence of D-branes via a simple
change of boundary conditions at the string ends. In other words, D-branes
absorb and radiate strings. In analogy with ordinary particles, D-branes can be
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characterized by a tension (mass per unit volume) and a charge that defines their
coupling to suitable tensor gauge fields. While their dynamics is prohibitively
complicated, in the small coupling limit, they are just rigid walls and so one is
effectively studying some sort of Casimir effect induced by their presence. The
idea is hardly new: for instance, the familiar Lamb shift of QED is essentially
a Casimir effect induced by the atom. What is new and surprising in this
case, however, is that the perturbation theory around D-branes can be studied
in one shot for the whole string spectrum. In other words, for an important
class of phenomena that can be associated to D-branes, a macroscopic analysis
of the corresponding field configurations can be surprisingly accompanied by a
microscopic analysis of their string fluctuations. This is what makes D-branes far
simpler than other string solitons, for instance the M5-brane, on which we have
very little control at this time. The mixing of left and right closed-string modes
met in the discussion of orientifolds in the context of string dualities can also
be given a spacetime interpretation along these lines: it is effected by apparently
non-dynamical ‘ends of the world’, usually called O-planes. There is also an
interesting possibility, well realized in perturbative open-string constructions:
while branes, being physical objects, are bound to have a positive tension, one
can allow different types of O-planes, with both negative and positive tension.
While the former are typical ingredients of supersymmetric vacua, the latter can
induce interesting mechanisms of supersymmetry breaking that we shall mention
briefly in the next section.

7.5 Some applications

The presence of branes in string theory provides new perspectives on a number
of issues of crucial conceptual and practical import. In this section, we comment
briefly on some of them, beginning with the amusing possibility that our universe
is associated with a collection of branes and then moving on to brief discussions
of black hole entropy and color-flux strings.

7.5.1 Particle physics on branes?

One is now confronted with a fully novel situation: as these ‘branes’ are extended
objects, one is naturally led to investigate the physics of their interior or, in
more pictorial terms, the physics as seen by an observer living on them. To
this end, it is necessary to study their small oscillations that define the light
fields or, from what we have said in the previous sections, the light species of
particles seen by the observer. These will definitely include the scalars that
describe small displacements of the ‘branes’ from their equilibrium positions
and possibly additional light fermionic modes. A surprising feature of D-branes
is that their low-energy spectra also include gauge fields. Both scalars and
gauge fields arise from the fact that open strings end on D-branes (seen from
the brane, their intersections are point-like) and are, in fact, associated with
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l

Figure 7.9. A system consisting of two parallel D-branes, to which oriented open strings
can attach in four different ways. The masses of the gauge fields associated to the four
types of open strings are proportional to the shortest distances between the branes they
connect. When the mutual distance l between the branes is not zero, one is thus describing
two massless gauge fields, with a corresponding unbroken U(1) × U(1) symmetry, and
two additional massive W-like fields. However, when l → 0 the two W-like fields become
massless as well, while the gauge symmetry enhances to U(2). In this geometric setting
for the BEH mechanism, the Higgs scalar describes the fluctuations of the branes relative
to one another, while its vacuum value defines their relative distance l .

string fluctuations transversal or longitudinal to the branes, respectively. In
addition, when several branes coincide non-Abelian gauge symmetries arise, as
summarized in figure 7.9. In equivalent terms, the mutual displacement of branes
provides a geometric perspective on the BEH mechanism. Moreover, the low-
energy dynamics of gauge fields on a Dp-brane is precisely of the Yang–Mills
type but, at higher energies, interesting stringy corrections come into play. While
a proper characterization of the general case is still an open problem, in the
Abelian case of a single D-brane and in the limit of slowly varying electric and
magnetic fields, string theory recovers a beautiful action proposed in the 1930s by
Born and Infeld to solve the singularity problem of a classical point-like electric
charge, as originally shown by E Fradkin and A Tseytlin. Let us explain this point
briefly. Whereas in the usual Maxwell formulation the resulting Coulomb field

E = q

r2
r̂ (7.50)

where r̂ denotes the unit radial vector, leads to an infinite energy, in string theory
the Maxwell action for the static case is modified and takes the form

−1

2
E2 → 1

2πα′
√

1 − 2πα′ E2 (7.51)
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so that equation (7.50) is turned into

E = q√
r4 + (2πα′)2

r̂. (7.52)

As a result, the electric field strength saturates to q/2πα′, much in the same way
as the speed of a relativistic particle in a uniform field saturates to the speed
of light c, an analogy first stressed in this context by C Bachas. Thus, once
more string theory appears to regulate divergences, as we have already seen in
connection with the ultraviolet problem of gravity.

Summarizing, the world volume of a collection of D p-branes is, by
construction, a (p + 1)-dimensional space that contains, in principle, the correct
types of light fields to describe the particles of the standard model. This
observation has changed our whole perspective on the Kaluza–Klein scenario, is
at the heart of current attempts to model our universe as a collection of intersecting
D-branes and brings about a novelty that we would like to comment upon briefly.
The issue at stake is, again, the apparently unnatural hierarchy between the
electroweak and Planck scales, on which this scenario offers a new geometric
perspective, since in a ‘brane world’ gauge and matter interactions are confined
to the branes, while gravity spreads in the whole ambient space. One can thus
provide a different explanation for the weakness of gravity: most of its Faraday
lines are spread throughout the internal space and are, thus, simply ‘lost’ for a
brane observer. This is the essence of a proposal made by I Antoniadis, N Arkani-
Ahmed, S Dimopoulos and G Dvali, that has stimulated a lot of activity in the
community in recent years. For instance, with n extra circles of radius R one
would find that a (4 + n)-dimensional Newton constant G4+n for bulk gravity
induces, for two point-like masses on the brane, an effective Newton constant
1/G4 ∼ Rn/G4+n . This result can be obtained by adding the contributions of the
extra circles or, more simply, purely on dimensional grounds. Playing with the
size R, one can start with G4+n ∼ (1/TeV)2+n and end up with the conventional
G4 ∼ 1/(1019 GeV)2, if R ∼ 1032/n × 10−4 fm, so that if n ≥ 2, the resulting
scenario is not obviously excluded. The phenomenon would manifest itself as a
striking change in the power law for the Newton force (7.3) which, for r < R,
would behave like 1/r2+n , a dramatic effect indeed, currently investigated by a
number of experimental groups at scales somewhat below the millimetre. In a
similar fashion, one can also conceive scenarios where the string size �s is also
far beyond the Planck length but a closer inspection shows that, in all cases, the
original hierarchy problem has been somehow rephrased in geometrical, although
possibly milder, terms: all directions parallel to the world brane should be far
below the millimetre, at least �(10−16 cm), if no new phenomena are to be
present in the well-explored gauge interactions of the standard model at accessible
energies, so that a new hierarchy emerges between longitudinal and transverse
directions. The literature also contains interesting extensions of this scenario with
infinitely extended curved internal dimensions, where gravity can, nonetheless,
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be localized on branes but this simpler case should suffice to give a flavour of the
potential role of branes in this context.

It is also possible to complicate this picture slightly to allow for the breaking
of supersymmetry. To date, we have only one way to introduce supersymmetry
breaking into closed strings working at the level of the full string theory, as
opposed to its low-energy modes: Bose and Fermi fields can be given different
harmonic expansions in extra dimensions. For instance, referring to the case in
section 7.3, if along an additional circle Bose fields are periodic while Fermi
fields are antiperiodic, the former inherit the masses k/R, while the latter are
lifted to (k + 1/2)/R, with supersymmetry broken at a scale �M ∼ 1/R.
This is the Scherk–Schwarz mechanism, first fully realized in models of oriented
closed strings by S Ferrara, K Kounnas, M Porrati and F Zwirner, following a
previous analysis of R Rohm. Branes and their open strings, however, allow new
possibilities, known in the literature, respectively, as ‘brane supersymmetry’ and
‘brane supersymmetry breaking’, that we would like to briefly comment upon.
Of course, the mere presence of branes, extended objects of various dimensions,
breaks some spacetime symmetries and, in fact, one can show that a single brane
breaks at least half of the supersymmetries of the vacuum but more can be done
by suitable combinations of them. Thus, the first mechanism follows from the
freedom to use, in the previous construction, directions parallel or transverse to
the ‘brane world’ to separate Fermi and Bose momenta. While momenta along
parallel directions reproduce the previous setting, orthogonal ones, in principle,
cannot separate brane modes. However, a closer inspection reveals that this is
only true for the low-lying excitations, while the massive ones, affected by the
breaking, feed it via radiative corrections to the low-lying modes, giving rise
to a gravitational analogue of the ‘seesaw’ mechanism, with �M ∼ √

GN/R2.
Finally, the second mechanism can induce supersymmetry breaking in our world
radiatively from other non-supersymmetric branes, with the interesting possibility
of attaining a low vacuum energy in the observable world.

By and large, however, one is again led to a puzzling end: a sort of ‘brane
chemistry’ allows one to concoct an observable world out of these ingredients,
much in the spirit that associates chemical compounds with the basic elements
of the Periodic Table and, eventually, to electrons and nuclei. However, the
problem alluded to in the previous sections is still with us: we presently have
no plausible way of selecting a preferred configuration to connect string theory to
our low-energy world, although one can well construct striking realizations of the
standard model on intersecting branes, as first shown by the string groups at the
Universidad Autonoma de Madrid and at the Humboldt University in Berlin.

7.5.2 Can strings explain black hole thermodynamics?

As we have stressed, D-branes can be given a macroscopic description as
solutions of the nonlinear field equations for the light string modes and, at the
same time, a microscopic description as emitters and absorbers of open strings.
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Figure 7.10. Brane supersymmetry and the gravitational seesaw. If the momenta of Bose
and Fermi brane fields are separated along a direction orthogonal to the D-brane, only the
massive brane excitations feel the effect, that is then transmitted via radiative corrections
to the low-lying excitations, relevant for standard model physics.

Figure 7.11. The world as a collection of interacting branes. Amusingly, we have come all
this way from our matter seen as a collection of point particles, recovering at large scales
something quite reminiscent of our starting point.

If for a black hole, both descriptions were available, one would be naturally
led to regard the open string degrees of freedom as its own excitations. This
appears to provide a new perspective on a well-known result of S Hawking,
that associates a blackbody spectrum of radiation at a characteristic temperature
TH with the formation of a black hole. Since, as originally stressed by
J Bekenstein, the resulting conditions for the mass variation of the hole have the
flavour of thermodynamics, D-branes offer the possibility of associating with this
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thermodynamics a corresponding statistical mechanics, the relevant microstates
being their own excitations.

In the presence of a static isotropic source of mass M at the origin, the
Minkowski line element is deformed to

ds2 =
(

1 − 2GNM

rc2

)
c2 dt2 −

(
1 − 2GNM

rc2

)−1

dr2 − r2 d�2. (7.53)

This expression holds outside the source, while the special value of the radial
coordinate rh = 2GNMc−2 corresponds to the event horizon, that can be
characterized as the minimum sphere centred at the origin that is accessible to
a far-away observer. For most objects, rh lies deep inside the source itself (e.g.
for the sun rh ≈ 3 km, to be compared with the solar radius R ≈ 106 km), where
equation (7.53) is no longer valid, but one can conceive a source whose radius
is inferior to rh and this is called a black hole: according to classical general
relativity, any object coming from outside and crossing the horizon is trapped
inside it forever. Over the past decade, astrophysical observations have given
strong, if indirect, clues that black holes are ubiquitous in our universe.

As anticipated, however, Hawking found that black holes are not really black
if quantum mechanics is properly taken into account. Rather, quantizing a field
theory in a background containing a black hole, he showed that, to an external
observer, the hole appears to radiate as a black body with temperature

TH = c3
�

8πkBGNM
(7.54)

where kB denotes Boltzmann’s constant. This amazing phenomenon that can
be made plausible by noting that a virtual particle–antiparticle pair popping up
in the neighbourhood of the horizon can have such a dynamics that one of
the two crosses the horizon, while the other, forced by energy conservation to
materialize as a real particle, will do so by absorbing and carrying away part of
the gravitational energy of the black hole. In analogy with the second law of
thermodynamics, given the temperature TH one can associate to a black hole an
entropy

1

kB
SH = 4πGNM2

c�
= 1

4
AH�−2

Pl (7.55)

where AH is the area of the horizon and �Pl is the Planck length �Pl =√
GN�/c3 ≈ 10−33 cm, that we have repeatedly met in the previous sections.

This expression, known as the Bekenstein–Hawking formula, reflects a universal
behaviour: the entropy of any black hole is one-quarter of the area of its horizon
in Planck units.

Several questions, that have long puzzled many experts arise:

• As anything crossing the horizon disappears leaving only thermal radiation
behind, the S-matrix of a system containing a black hole no longer seems to
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be unitary, thus violating a basic tenet of quantum mechanics. This is known
as the information paradox.

• Entropy is normally a measure of the degeneracy of microstates � in some
underlying microscopic description of a physical system, determined by
Boltzmann’s formula,

S = kB log �. (7.56)

Since the entropy (7.55) of a black hole is naturally a huge number, how can
one exhibit such a wealth of microstates?

• Equation (7.54) clearly shows that the more mass is radiated away from the
black hole, the hotter this becomes. What then is the endpoint of black hole
evaporation?

Within string theory, there is a class of black holes where these problems can
be conveniently addressed, the so-called extremal black holes, that correspond
to BPS objects in this context. The simplest available example is provided by
a source that also carries an electric charge Q. The coupled Maxwell–Einstein
equations would give, in this case, the standard Coulomb potential for the electric
field, together with the modified line element (GN M2 > Q2)

ds2 =
(

1 − 2GNM

rc2
+ GN Q2

r2c4

)
dt2

−
(

1 − 2GNM

r c2
+ GN Q2

r2c4

)−1

dr2 − r2 d�2 (7.57)

that generalizes equation (7.53). Note that the additional terms in (7.57) have a
nice intuitive meaning: Q2/2r is the electrostatic energy introduced by the charge
in the region beyond r and this contribution gives rise to a repulsive gravitational
effect. The event horizon, defined again as the smallest sphere surrounding the
hole that is accessible to a far-away observer, would now be

rH = c−2
(

GN M +
√

(GN M)2 − GN Q2
)

. (7.58)

A source with a radius smaller than rH would be a Reissner–Nordstrom black
hole, with temperature and entropy given by

TH = c3
�

√
(GNM)2 − GN Q2

2πkB

(
GNM +

√
(GNM)2 − GN Q2

)2
,

SH

kB
= π

c�GN

(
GN M +

√
(GN M)2 − GN Q2

)2 = 1

4
AHl−2

p . (7.59)

For a given value of Q, if M → Q/
√

GN, the temperature vanishes, so that
the black hole behaves somehow in this limiting (BPS) case as if it were an

Copyright © 2005 IOP Publishing Ltd.



Some applications 177

elementary particle. Such a black hole is called extremal: its mass is tuned so that
the tendency to gravitational collapse is precisely balanced by the electrostatic
repulsion. This limiting case entails a manifestation of the phenomenon alluded
to in section 7.4: although the Maxwell–Einstein equations are highly nonlinear,
one can actually superpose these extremal solutions.

Extremal black holes of this type can be described in string theory in
relatively simple terms. One of the simplest configurations involves the type
IIB string theory compactified on a five-dimensional torus, together with a D5-
brane and a D1-brane wrapped n5 and n1 times respectively around the torus.
This BPS configuration is characterized by two topological numbers, n1 and n5,
but one needs a slight complication of it since, being the only BPS state with
these charges, it leads to a vanishing entropy, consistently with equation (7.59).
However, suitable excitations, involving open strings ending on the D-branes and
wrapping in various ways around the torus, are also BPS and can be characterized
by a single additional quantum number, ne. Many open string configurations now
correspond to a given value of ne and counting them one can obtain a microscopic
estimate of the entropy. One can then turn to IIB supergravity on the 5-torus,
constructing a BPS solution of its field equations that involves the three charges
mentioned earlier, to calculate its event horizon, its temperature and, finally,
to obtain the corresponding macroscopic estimate for the entropy. The exact
agreement between the two estimates is then striking. Since this original example
was discussed by A Strominger and C Vafa, many other black hole configurations
have been studied, while the analysis has been successfully extended to nearly
extremal ones. These results, however, rely heavily on supersymmetry and serious
difficulties are met in attempts to extend them to non-supersymmetric black holes.

The analysis of nearly extremal black holes also appears to provide a
clue to the information paradox. Studying a configuration slightly away from
extremality, it was indeed found that Hawking radiation can be associated with the
annihilation of pairs of open strings, each ending on a D-brane, that give rise to
open strings remaining on the brane and to closed strings leaving it. The resulting
radiation turns out to be exactly thermal, while temperature and radiation rate are
in perfect agreement with a Hawking-like calculation. Almost by construction,
this process is unitary and so the information that seemed lost appears to be left
in the D-branes.

7.5.3 AdS/CFT: strings for QCD mesons or is the universe a hologram?

In the previous section, we saw that the entropy of a black hole is proportional to
the area of its horizon. This is remarkable, since one can argue that black holes
maximize the entropy. Indeed, assume for a moment that one had managed to
construct a physical system in a given volume V with a mass M − δM slightly
inferior to that of a black hole whose horizon spans the surface surrounding V
but with an entropy S + δS slightly larger than that of the black hole. Throwing
in a bit of matter would then create a black hole while simultaneously lowering

Copyright © 2005 IOP Publishing Ltd.



178 Strings, gravity and particle physics

Figure 7.12. The D-brane picture of Hawking radiation. A pair of open strings collide,
givi ng ri se t o a cl osed s t r i ng t hat l eaves t he brane. As a r esul t , Hawki ng r adi at i on r eaches
t he bul k vi a t he emi ssi on of cl osed st r i ngs.

the entropy, thereby violating the fundamental law o f thermodynamics. This
observation led ’t Hooft to propose the Holographic Principle: in a co m p lete
theory of quantum gravity, it should be possible to describe the physics of a
certain region of sp acetime in terms of degrees of freedom living on th e surface
surrounding it, while the information stored should be limited to roughly one bit
per Planck area unit.

Over th e p ast few years, concrete realizations of th e Holographic Princip le
have been constructed, most dramatically in th e contex t o f the so -called AdS/CFT
correspondence. In its simplest form, this arises if the type IIB string th eory is
defin ed in a ten-dimensional spacetime with th e topology of a five-dimensional
sphere ( S 5 ) m u ltip lied b y a five- d im e n sio n a l a n ti- d e Sitter sp ace ( Ad S5 ), a
non-compact manifold whose boundary can be id entified with four-dimensional
Minkowsk i space. This geometry describes the region around the horizon for a
stack of n D3 - b r a n e s, th at in th e larg e - n lim it actu a lly inva d e s th e wh o le o f sp ace
tim e. On th e one hand, th ere are, therefore, D-branes, th at as we have seen host a
Yang–Mills theory, while, o n the other, th ere is a corresponding string background
and J Maldacena conjectured that the resulting string theory (which includes
gravity) in the bulk of Ad S5 is exactly equivalent (dual) to an � = 4 U(n) super
Yang–Mills theory in its border, the four-dimensional Minkowski space. This
remarkable correspondence actually reflects a number of unusual equivalences
between string amplitudes: for instance, as sh own in figure 7 .13, a one-loop
diagram for open strings, obtained by widening an ordinary field theory loop into
an annulus, can alternatively be regarded as a tree-level diagram for closed strings.
In other words, the distinction between closed and open strings and, thus, between
gravity and gauge fields is somewhat blurred in string theory. The conjecture was
particularly well tested in the regime where the size of the strings is very small
compared to the radii of Ad S5 and S5 and where the string coupling constant is
also small, so that the string theory is well described by classical supergravity.
In the dual picture, this corresponds to the U(n) Yang–Mills theory in the limit
where both n and the ’t Hooft coupling g2

YMn are large, i.e. in its deep quantum
mechanical regime. Still, some quantities protected by supersymmetry match
admirably in the two descriptions, confirming this surprising correspondence
between theories defined in different spacetime dimensions. Tests at intermediate
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tH

tV

Figure 7.13. A surprising equivalence in string theory. An annulus diagram can be
regarded as a loop diagram for open strings (with vertical time tV) or, equivalently, as
a closed string tree diagram (with horizontal time tH).

regimes are much harder and are still largely lacking but no contradictions have
emerged so far. In this way, gravity would ideally provide a tool for studying
quark confinement but with a new ingredient: the colour flux tubes penetrate an
additional dimension of spacetime.

We have thus come somehow full circle. The string idea originated from
attempts made in the 1960s to model the strong interaction amongst mesons via
narrow flux tubes, that culminated in the well known work of G Veneziano. With
the advent of QCD, this picture was abandoned, since the flux tubes were regarded
as a manifestation of QCD itself, while strings were proposed, as we have seen,
as a tool to attain a finite quantum gravity. However, many people kept looking
for a string-like description of the colour flux-tubes and, with the advent of the
AdS/CFT correspondence, this was indeed realized to some extent, albeit once
more in a supersymmetric setting that is free of many of the intricacies of QCD.
Again, difficulties in the various types are met when one tries to proceed away
from supersymmetry to come closer to our real confining low-energy world.
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