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Preface

This volume brings together the contents of the courses given at the doctoral
school on ‘Gravitation: from the Hubble Length to the Planck Length’ which
took place in September 2002 in the beautiful environment of the historic Villa
Mondragone, near Frascati, Italy. The school was sponsored and financed by
SIGRAV (the Italian Society of Relativity and Gravitation), the Italian National
Institute of Nuclear Physics and the University of Rome ‘Tor Vergata’.

The main actor on the stage was gravitation: though the weakest among
the fundamental interactions that drive the universe, it is nevertheless, in various
respects, the most encompassing and pervasive one. As stressed by the title of the
school, one can see that, whenever large concentrations of matter and energy are
involved, gravitation works at all scales, from the microscopic domain (such as
the interior of black holes and at the very birth of the universe, where quantum
effects are crucially relevant as well) up to the huge clusters and superclusters of
galaxies which form the large-scale texture of the present-day cosmos.

Gravity is not just the familiar mutually attractive force, affecting all types
of matter—energy but a peculiar manifestation of spacetime itself. Indeed, as
Einstein has taught us, spacetime is not a rigid arena—a simple ground for the
play of others—but, due to the equivalence of gravitation and inertia, it is a
flexible and dynamic part of the whole machinery. This renders the intimate
behaviour of gravitation not only much more complex than was once thought
but also much more interesting. Theory predicts a whole host of new phenomena,
most of them giving rise to tiny effects save under extreme conditions, and a
challenge for experimentalists. In turn, experiments and observations do as usual
supply insights extending our overall understanding and providing the stimulus to
develop new viewpoints and new theories.

Each chapter covers a particular feature, ranging from refined experimental
techniques in gravitational physics all the way to cosmology and to the ‘quantum
frontier’. The authors have tried to be as clear and as pedagogical as possible,
while, at the same time, bringing the reader to the edge of current research topics.
This renders the volume much more than a simple ‘proceedings book’.

Of course, only a selection of topics could be treated here. Nevertheless,
we hope that these chapters will provide the reader with the flavour of current

Copyright © 2005 IOP Publishing Ltd.



research on spacetime and gravitation and with the feeling of fascination that such
frontier investigations are able to transmit to our human perception.

Eugenio Coccia, Vittorio Gorini and Roberto Peron
9 June 2004
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Chapter 1

Introduction

Roberto Peron and Amedeo Balbi

Almost a century after its development by Albert Einstein, the general theory of
relativity is living in a new golden age. Being a beautiful theory both on the
mathematical side and from the point of view of its clear physical insight, it is a
continuous source of experimental predictions: it turns out that the picture of the
world we get from its equations is tightly bound to what we call ‘reality’.

It is not by chance that most of the greatest minds of scientific thought—
Galilei, Newton, Einstein—found in gravitation the key to unveiling so many
secrets of nature. In fact, Einstein (following a path opened by Gauss and
Riemann) discovered that gravitation is nothing but the behaviour of spacetime
itself. The path of a test particle in a gravitational field is simply geodetic motion
in a curved spacetime; in turn, spacetime is curved by the presence of matter and
energy in it. We can speak, following Wheeler, about geometrodynamics.

It is interesting to note that Einstein started from the desire to extend the
principle of relativity from the class of inertial reference frames but ended up
obtaining so much more. It was a conceptual jump, not a simple evolution. It is
once more amazing to see the number and variety of physical consequences one
may obtain from the relatively simple assumptions upon which general relativity
is based.

The lectures in this book cover a wide spectrum of topics in the field of
gravitational physics. All of them are written by leading scientists: their main
scope is to give the reader a general view of their respective fields of research,
focusing on foundations, state-of-the-art, open problems, either from a theoretical
or an experimental point of view. We find unsolved problems in general relativity
and cosmology: even if we restrict ourselves to solar system science, year after
year the complex dynamics of systems driven by the ‘force’ of gravity is revealed.

From the theoretical point of view, the appearance of general relativity
brought onto the scene new mathematical methods, capable of dealing better
with the geometrical character of this theory. This process had its peak in the
formulation of the singularity theorems by Penrose and Hawking. These theorems
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helped us to obtain a better understanding of the limits of general relativity as a
physical theory: at some level, there should be a much more refined theory with
quantum effects included in the geometry of spacetime. So, in recent decades,
a number of attempts in this direction have flourished, namely covariant and
canonical quantum gravity and, more recently, string theory and loop quantum
gravity. This is only mentioning the mainstream.

The problem of singularity is directly linked to a description of the birth
and expansion of the universe. This is usually done in the framework of
the Friedmann—Robertson—Walker relativistic models but several reasons have
led to an extension of this—called inflationary cosmology—which adds new
assumptions about spacetime dynamics (i.e. the existence of an inflaton field
coupled to gravity) going beyond standard geometrodynamics.

Considering the dynamics of spacetime on a very large scale introduces
some issues at the border between physics and philosophy: in particular, the
link between local and ‘global’ reference frames could open the way to some
hypothesis on the global distribution and flow of matter—energy. This line of
thought—known as ‘Mach’s principle’—had played a fundamental rdle in the
formulation of general relativity by Einstein. Far from being an isolated question,
it opens the way to a deeper view of the mathematical structure of the theory
and finds its place in studying some peculiar predictions of the theory, like
gravitomagnetism.

The experimental side of gravitation science is as varied as the theoretical
one. First of all, geometrodynamics leads to a number of direct experimental
predictions that show the various ways in which relativistic gravitation could
differ from the Newtonian one. So light is bent, test particles trajectories are
different, clocks near masses behave differently. These features are better handled
in a particular formalism called Parametrized Post-Newtonian (PPN), in which
deviations from Newtonian physics are taken into account using an expansion
of metric and stress—energy tensors around the ‘Newtonian ones’. In this way,
it is possible to describe many different gravity theories, each with its own set of
coefficients. Comparison with the experiment leads to constraints on these values,
excluding sets of theories which are not compatible with observed behaviour. In
fact, there exists a number of ‘alternative theories’, usually obtained by relaxing
some of the hypotheses at the basis of general relativity or introducing new fields
coupled to the metric one. In this respect, the PPN formalism is not representative
of a particular class of physical theories but it is to be seen as a classification
device.

Side by side with the ‘classical tests’, following the physical consequences
of geometrodynamics leads to qualitatively new features of spacetime itself. The
existence of phenomena such as gravitomagnetism and gravitational waves in a
sense completes the characterization of geometrodynamics as a true field theory,
showing the different ways in which spacetime is a main actor in the physical
scene.
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A separate place must be reserved for the Equivalence Principle. Its
formulation is at the heart of geometrodynamics—as Einstein conceived it—and
constitutes perhaps its main distinctive character with respect to the other theories
of gravitation. The need for a field theory in order to describe gravitational
phenomena was more or less clear but the treatment of it in an ‘apparent force
way’ was indeed revolutionary. This point has been widely criticized (together
with general covariance) in a number of ways but what remains once again shows
its power. The importance of an experimental verification of this principle with
the greatest possible accuracy is evident and there is active work today focused
on a number of laboratory-based or spaceborne experiments.

Returning to Newtonian gravitation, could it be that, even on a local scale,
we find something different from what we expected? Some claim that, on a
small scale, the ‘gravitational force’ does not scale as 1/r2; others predict secular
variations of the gravitational constant G. All these topics are worth testing
experimentally, each of them a possible source of insight and ideas of valuable
interest even outside gravitation physics.

1.1 Gravitation in the solar system and beyond

The Earth and the solar system environment are perhaps the main places where
gravitational phenomena can be studied. Due to the relative closeness of
solar system objects, their motion can be tracked with relatively high accuracy,
providing thus a great deal of information about gravitational dynamics. This field
of study has grown in importance over the years, since improvement in knowledge
about the ‘gravitational environment’ around Earth and the other objects in
the solar system means improvements in space navigation techniques. This is
much more important for space techniques applied to Earth sciences, where this
knowledge has important applications in remote sensing of the ‘Earth system’.

Chapter 2 ‘Probing spacetime in the solar system’ by B Bertotti presents the
state-of-the-art methods regarding measurements in the solar system by focusing
on three fundamental physical quantities: transit times, angles and frequencies.
While a lot of other measurements could be performed in this context, the three
ones given here retain their status of ‘fundamental’; they constitute a framework to
which others techniques must relate to, and a source for continuously improved
experimental data. Due to their relative conceptual simplicity, they allow us to
see very clearly the progress achieved. From Lunar Laser Ranging to GAIA to
Cassini, current or forthcoming missions are extending the accuracy to the pointin
which care must be taken of previously ignored effects. It is in that small frontier
between known and unknown (modelled and unmodelled) that new science is
done.

The phenomenon of gravitomagnetism—an interaction of gravitational
origin caused by currents of mass—energy—is a peculiar prediction of general
relativity. Chapter 3 ‘Frame-dragging and its measurement’ by I Ciufolini
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contains a detailed description of the solar system and astrophysical implications
of gravitomagnetism. Together with recent advances in studying these phenomena
using test gyroscopes, test particles, clocks and photons, the most recent results
in measuring Lense—Thirring effect (gravitomagnetic precession caused by Earth
angular momentum) in LAGEOS and LAGEOS 1II orbits are presented. The
Equivalence Principle lies at the basis of the general relativity theory, and indeed
its testing remains fundamental for the experimental confirmation of the theory.
From this principle Einstein directly deduced light deflection and changing of
clock rates near a mass. In chapter 4 ‘The special relativistic Equivalence
Principle’ by K Nordtvedt an extended version of this principle is introduced,
fully exploiting special relativity. It is shown that in this way one can predict
a number of further effects, including geodetic and gravitomagnetic precession.
These effects do not include all the possible consequences of general relativity
theory, but are present in all locally Lorentz-invariant, complete metric theories
of gravity.

Among the various techniques developed for space measurements, Lunar
Laser Ranging shines as one of the most precise. It has the particular honour of
having been started in conjunction with the first lunar manned landing, and this
raised its fascination. Chapter 5 ‘Lunar laser ranging; a comprehensive probe
of post-Newtonian gravity’ by K Nordtvedt describes its use for studies of post-
Newtonian effects in the Sun—Earth—-Moon system. The order 1/¢? equations
of motion reveal effects that have no counterpart in Newtonian dynamics, and
could be in principle different also with respect to Einstein general relativity.
Cosmological consequences (related to scalar—tensor theories) may be tested
too. Analysis of Lunar Laser Ranging data can therefore improve constraints
on alternative theories of gravitation, and its expected improvements will render
this as useful a tool as in the past.

1.2 Cosmological issues

The connection between the large-scale properties of the Universe and the
extremely small scales investigated by fundamental physics becomes evident
when one explores the evolution of the Universe in its early stages. Gravitational
instability governs the growth of the cosmic structure, seeded by primordial
fluctuations in the spacetime metric. The emergence of these fluctuations is
directly related to physical processes taking place in the Universe when the energy
is of the order of the Planck scale. Phenomena that are not testable in laboratories
on Earth can then be probed by the imprint they have left on the cosmic evolution.
Chapter 6 ‘The Early Universe and the Cosmic Microwave Background’ by
A Balbi, outlines the interplay between fundamental physics and cosmological
observations and describes the revolutionary progress in our understanding of the
physical Universe that has taken place over the past decade. Some of the questions
that are investigated by modern cosmology are: What is the nature of the scalar
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fields that govern inflation? What are the different contributions to the energy
density of the Universe? What is the nature of the quantum vacuum, whose energy
seems to dominate the cosmic budget today?

1.3 The other side: gravitation in the quantum regime

The standard model describing the unification of electromagnetic, weak and
strong interactions into a single gauge theory is a beautiful and, in many respects,
very successful description of reality. Unfortunately, gravity displays a peculiar
behaviour with respect to the other fundamental forces and cannot be incorporated
into the framework provided by the standard model: for example, gravity is
purely attractive, and it is so weak that it basically plays no role at the atomic
and sub-atomic level. Furthermore, the effective coupling of the gravitational
interaction between point-like particles becomes extremely strong at the Planck
scale Ep; ~ 10'° GeV, resulting in divergences in the quantization of general
relativity. The most promising way of connecting gravity to the other interactions
is provided by string theory. Chapter 7, ‘Strings, Gravity and Particle Physics’
by A Sagnotti, reviews some of the key aspects of string theory, including
extra-dimensions and branes, with applications to particle physics, black hole
thermodynamics and color-flux strings.

1.4 Gravitation as a universal phenomenon

The contributions to this volume demonstrate how the study of gravitation can be
both interesting and a source of precious information about the ‘machinery’ of our
world. For many years the smallness of the gravitational interaction—compared
to the other ones—permitted only a kinematical study (motion of the Heavens).
More accurate observations and new theories have permitted a deeper insight
into the dynamics of most gravitational systems, opening problems still unsolved
(chaotic dynamics, for example). General relativity added a new, fundamental
piece of information, showing how the fall of an apple is a consequence of the
fundamental properties of spacetime. This, after all, showed how a fundamental
theory can be very simple. We hope such clarity will be achieved by the quantum
theory of gravity, whatever it will be.

The simplicity we believe is a characteristic of a fundamental theory has
its counterpart in the overwhelming complexity of natural phenomena as we see
them. The experimental procedures employed add a further degree of complexity
to our view. In the midst of all this ‘chaos’, we feel easy—even when studying
‘this” or ‘that’—by staying in touch with something that is everywhere, thereby
confirming the unity of our universe.
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Chapter 2

Probing spacetime in the solar system

Bruno Bertotti
Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia,
Pavia

2.1 Introduction

This very selective (in particular in the bibliography) and synthetic exposé on
experimental gravitation [20] in space—somewhat different from the original
presentation—is organized around three physical quantities: transit times,
angles and frequencies. For each of these quantities, this chapter, reviews
the fundamental instrumental concepts, together with the driving errors and a
paradigmatic experiment. Its purpose is to stress and exemplify the importance
of the current and outstanding instrumental improvements for the understanding
of the structure of spacetime: it may be useful for theoreticians who wish
to design new experiments and for experimentalists who may find unforeseen
applications and implications for their techniques. For more details, see [7]. At
the fundamental level, a ‘moral’ is the need to formulate an experiment in an
invariant way: coordinates are only a computational tool, a ladder with which
to climb the geometrical wall [3]. For example, the distinction between the
gravitational and transversal Doppler shifts is coordinate-dependent: to avoid
pitfalls, the full expression (2.8) should be used. The initial planning of the Global
Positioning System by the American military was marred by this confusion and,
as a result, civilian physicists had to intervene to define the correct software [1].
From the instrumental point of view, the recent impressive improvement in
accuracy in measurements of distances, angles and frequencies in the solar system
does not mean that the corresponding errors, as usually expressed in terms of
‘standard deviations’, should be taken as a mantra, without a careful and often
critical analysis. I only mention the fact that, for these three quantities, the
dynamic range in relation to the sought signal is huge: although this hindrance
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depends on the respective time scales and cannot be discussed in general terms,
let it be enough to point out the crude ratio between the observable and the error:

(i) For Lunar Laser Ranging, the error in the distance D is op = 1 cm =
2.5x 107D,

(i1)) In GAIA'’s astrometric project, the goal in angular accuracy is 10 parcsec =
5x 1071,

(iii) In Cassini’s Doppler experiments, the observable is the fractional frequency
shift y: o, =3 x 10715 =3 x 10~ !yg, where yg = 10~ corresponds to
the Earth’s orbital speed, the main contribution to y.

The data analysis must dig 10 or 11 orders of magnitude into the record before
being able to deal with the signal at the accuracy determined by the instrumental
errors. Many different contributions, all different in nature, larger than this must
be eliminated or estimated before coming to the gist of the experiment. Very often,
they are not known well enough a priori, and must be determined simultaneously
with the target signal. Among the difficulties which may arise in this process, I
can mention the following ones.

e Under- and over-parametrization: a good physical understanding of the
physics and the relevance of all the contributions other than the main signal is
necessary. Adding unnecessary parameters dilutes the information content.

e Correlations between the target parameter p and another parameter, say
p’: in this case, the experiment only provides, in the (p, p’) plane, a very
elongated error ellipse, which undermines the accuracy in p if p’ is not
known by other means.

e Gaps in the record, especially if they also have time scales in the target
signal, are dangerous. For example, since the Moon is, de facto, laser
tracked preferably between its quarter and full phase, the data distribution
itself is modulated with the lunar synodic phase As. Since the Equivalence
Principle violating signal has the same signature (equation (2.6)), this results
in a deterioration in the accuracy [17].

e  When the signal is constant or varies on a time scale longer than the record,
a red spectrum for the noise of the observable quantity may be serious.
Because of the Wiener—Khinchin theorem, such a spectrum is equivalent to
a correlation in the observables and, hence, to an effectively smaller data
set: more dangerously, it may be evidence of systematic errors (like thermal
drift) and non-stationary behaviour.

Space offers several advantages, including:

e freedom from the Earth’s gravity and the related very strong dynamic
anisotropy;
small (but not vanishing!) non-gravitational forces;
very little residual gas; and
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e the space around a spacecraft is optically thin—communication by
electromagnetic waves is easy.

The main disadvantage is the launch cost, essentially due to the fact that the escape
velocity
GMg

~11.2kms™! 2.1
Re

Vesc = ,[2

is much larger (about three times) than the typical exhaust velocity of the gas, of
the order of its thermal speed. With chemical fuel, it is not possible to put a body
in orbit directly—multiple stages and large, expendable fuel tanks must be used.

2.2 Distance

2.2.1 Fundamentals

Traditionally the unit of length—the centimetre—was defined, through
interferometric measurements, as a given multiple of the wavelength Ay of a
stable optical spectral line. Two rods have the same length if they correspond
to the same number of wavelengths. The unit of time was independent and
provided by a microwave resonator based on an atomic system. By transferring
a frequency standard from the microwave to the optical band, it was possible
to measure the frequency ¢/Xp and to obtain the velocity of light ¢ (with the
dimension cm s~!). This transfer over a frequency range of about seven orders of
magnitude, however, is subject to relevant errors; moreover, the stability of lasers
used in interferometric techniques is much worse than that of atomic frequency
standards. As a consequence, the standard of length has recently been foregone
and the velocity of light ¢ is now a conventionally fixed quantity. If c = G = 1
(adopted here), lengths are measured in light seconds and masses are lengths:
me = 1.48 km, mg = 0.44 cm. Note that short-term relativistic effects on a
Keplerian orbit are of order m, therefore &~ 1 km in the solar system and &~ 1 cm
around the Earth.

This point of view is quite appropriate to space physics, where rigid rods
cannot be used: absolute distances are obtained from the transit times of short
light or radio pulses, timed with atomic clocks. It is also fully consistent with
general relativity, in which three-dimensional rigid bodies cannot be defined
in general: only the proper time is needed to construct the four-dimensional
manifold (the chronometric point of view; see the illuminating discussion in [19],
especially chapters II and III). Figure 2.1 shows how an invariant measurement
of distance is accomplished. Using several nearby, freely falling objects and the
equation of geodesic deviation, an invariant and operational way to measure the
curvature can be defined [3].

However, in the solar system, the round-trip light-time is available only for
very few bodies: the distances of the other ones are obtained dynamically. In
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Figure 2.1. The chronometric measurement of distance. In the spacetime frame (ct, x), we
have M = (0, x), P = (ct; —x, 0). In special relativity, the proper length of the hypotenuse
M P is the square root of the difference of the squares of the time-like and the space-like
sides: d? = x— ctl)2 —xt=c2 t1t2. This reduces to the elementary expression d = cty

when the events M and P are simultaneous, so that 1; = 5.

the neighbourhood of the Earth, the orbital period of a gravitationally bound
body determines, by the third Kepler law, the ratio GMg/a>: unless the Earth’s
parameter G Mg is known, all the semimajor axes a are determined to within a
constant scaling @ — a’ = ka. The measurement of a single semimajor axis (e.g.
the Moon’s) fixes the scale and all lengths. Similarly, for bodies orbiting around
the Sun, unless G M is known, the semimajor axes are determined to within a
change of scale. Range measurements of a single quantity, for instance those
carried out with the Viking spacecraft on Mars for the distance from the Earth,
fix all interplanetary distances. At present, GMg and G M, are known with the
fractional accuracy 2 x 1072 and 1.2 x 107!, respectively. Correspondingly, the
Astronomical Unit (AU) has an error of & 6 m. Note also that, in space physics,
the mass M and the gravitational constant G never appear separately.

2.2.2 Techniques

The electromagnetic measurement of distance is, of course, the basis of radar,
an impressive technological development, which was started in Great Britain for
military reasons and played an essential role in the Battle of Britain against the
German airforce in 1940. The first suggestion of using radio signal was put
forward by R A Watson Watt in 1935 and, later, the British Government, in
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particular through the work of Sir H Tizard, brought it to an operational stage
[8]. At present, the military use of radar is still paramount but new civilian
applications, in particular Synthetic Aperture Radar, were developed for all-
weather mapping.

However, an optical radar, with a wavelength A several orders of magnitude
smaller achieves a hugely larger gain (proportional to 1/A%) and allows much
shorter pulses and, hence, much more accurate ranging. A Q-switched laser
produces regular trains of very short (even 40 ps) pulses, which are fed into the
focal plane of a large reflecting telescope and sent to the target. On the target,
special optical systems—called retroreflectors—send the pulse back in the same
direction from which it comes. An elementary, two-dimensional realization of
such a device is just two orthogonal mirrors. The same telescope receives the
returned pulse and the delay At = 2D/c is measured electronically. Several Earth
satellites equipped with retroreflectors are routinely tracked in the context of space
geodesy (Satellite Laser Ranging, SLR); in particular, the two LAGEOS (LAser
GEOdynamic Satellites) suffer little atmospheric drag and provide a very good
realization of gravitational motion: they have achieved remarkable accuracies
(op < 0.5 cm, table 2.1). These measurements are also routinely accomplished
for the Moon (Lunar Laser Ranging, [LLR]) (currently with op < 2 cm), using
four retroreflectors placed there by the NASA Apollo missions and a Soviet
spacecraft.

The basis of radar measurements is the link budget, relating the emitted (P)
to the received (P’) power in terms of the wavelength A, the distance D and the
gains G and G’ of the main transmitter and the mirror on the target, respectively:

4
P =prc2c? () . (2.2)
4dm D

The gain G of a parabolic antenna or reflector depends on the angular position of
the source and is the ratio of the power flux in that direction and the isotropic flux.
On the axis,

4 Ae
=2
where A. is the effective area, somewhat less than the geometrical area of the
dish. The gain measures the lack of perfect collimation due to diffraction.

A laser tracking telescope is capable of transmitting a laser pulse of very
short duration t; and large energy Pt;. If Ny = Pt/ hv is the number of photons
in a single pulse, with the radar equation we obtain the number of photons N;
received through the same aperture and detected with a photomultiplier in the
primary focus: N; decreases very fast with the distance, as 1/D*. The received
pulse has a duration 7; greater than t; due to dispersion in the atmosphere and
the superposition of several sub-pulses from different retroreflectors encompassed
by the beam. The accuracy with which the round-trip transit time 2D/c can be
measured results in an accuracy op for the distance. It is important to note that,

Go

Copyright © 2005 IOP Publishing Ltd.



Table 2.1. The two LAGEOS satellites: mean orbital elements, mean secular rates and
rotation period. For the latter, we give the initial value (roughly 0.5 s for both satellites)
and an estimate of the rotation period at the end of 2001.

LAGEOS 1 LAGEOS 2

Launch 4 May 1976 22 October 1992
Semimajor axis 12270 km 12167 km
Revolution period 13500 s 13380s
Rotation period 0.5/~2500s 0.5/=~30s
Eccentricity 0.0039 0.0133
Inclination 109.80° 52.65°

Perigee rate —0.213°/d 0.438°/d

Node rate 0.342°/d —0.632°/d

for the Moon, N; is much less than unity, so that an actual measurement requires
averaging over many successive shots. Moreover, the number N; has a Poissonian
distribution and a standard deviation </N;: this places a fundamental limitation
on the accuracy with which one can measure the arrival time of the centroid of the
returned pulse.

The assumption of a straight path is far from correct, due to atmospheric
refraction, which increases the optical path by as much as 2 m, depending on
atmospheric conditions and the elevation over the horizon. The bulk of this
correction is evaluated with meteorological measurements and a model of the
atmosphere but, for a higher accuracy, another harmonic of the laser line is used
simultaneously. Since air is a dispersive medium, there is a difference between the
transit times in the two frequencies, which can be used to obtain the geometrical
distance D.

2.2.3 Lunar Laser Ranging

This section, a complement to Professor Nortdvedt’s contribution (chapter 5),
briefly introduces the outstanding Lunar Laser Ranging (LLR) experimental
programme. This programme is the main and, to some degree, unexpected
scientific result of the expensive and largely forgotten NASA Apollo missions
for the human exploration of the Moon: three retroreflectors were placed there by
the astronauts.

If the ratio Mg/M; = 1 + n between the inertial and gravitational mass of
the Earth (at r{) and the Moon (at rp = r| + r) are not the same, their motion in
an external (the Sun’s) gravitational potential per unit mass U (r1) fulfils

d’r Mg+ mum

au 5 r=—m-n)VU@r) —r-VVU@r)+ or?). (2.3)
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The last but one term is related to the solar tide in the quadrupole approximation:
a violation of the Weak Equivalence Principle (EP) brings in a new solar term, a
relative acceleration, independent of the distance r. To see what its effect is, note
that it corresponds to the potential (per unit mass)

_ _ me _ 2
Ugp = —H ——(nz—m)FR-r——(nz—m)n@R-r 2.4

where R is the vector from the Earth to the Sun and ng the mean motion of
the Earth. H; is the corresponding perturbation in the Hamiltonian function.
Neglecting the eccentricity of both the Moon and the Earth, H; depends on time
as cos s = R - r/(Rr) where A is the synodic longitude of the Moon. The effect
on the distance r is nearly the same as the effect on the osculating semimajor axis
a, governed by the first Lagrange equation

da 2 0H;

— = (2.5)

adt na’? M
in terms of the mean anomaly M = n(t — #p) and the mean motion n of the Moon
around the Earth. Since M and A only differ by their origin (the perigee and the
Sun, respectively), this directly integrates to

sr 2 Rn
- = —ﬁHl =202 —n)
r n<r

5 COS As. (2.6)
rn
At an elementary level and when the eccentricity of the Moon is neglected, this
equation is a simple consequence of the energy theorem: the rate of change in the
osculating orbital energy (per unit mass) —mg/(2a) equals the power

m
(n2 — m)R—C;R v

of the new force, from which (2.5) is easily derived.

The much larger force —r - VVU(r1) is due to the solar tides and, since
it corresponds to a potential function quadratic in r, it gives a correction in
the distance r with the period 2A, easily distinguishable from the Equivalence
Principle signal. An error of 107! in 8r/r (equation (2.2.3)) corresponds to
an error in 1, — 11 of about 2 x 10~ !!: after about 30 yr of data and a large
number of lunar months, this test, in effect, has attained the accuracy 5 x 10713,
From the fundamental point of view, a non-vanishing value for the parameter
n is a complex and overall effect, resulting from all terms which appear in the
mass of a body, in particular its binding energies. While for small bodies, such as
those employed in laboratory tests, the main binding energies are microscopic, for
the solar system bodies we are testing possible differences in the contribution of
the gravitational binding energy—the main one—to the inertial and gravitational
mass. The Lunar Laser Ranging test of the Equivalence Principle, therefore, is
essentially different from laboratory tests. As amply discussed by K Nortdvedt,
LLR is now an outstanding tool, not only for testing gravitational theories but also
for investigating the dynamics and interior of the Moon.

Copyright © 2005 IOP Publishing Ltd.



2.3 Angle

2.3.1 Fundamentals

If two light rays with null vectors p; and p; arrive at an event x (s) of an observer
at its proper time s, their angular separation § is invariantly defined as follows:
construct, for each of them, the projection p; = p — v(p - v) orthogonal to the
four-velocity v = dx/ds; § is the angle between the space vectors pj; and pa].
This shows that an angle depends on the motion of the (not necessarily inertial)
observer who measures it.

In classical physics, a goniometer is a rigid graduated circle, to which
the directions of distant objects (for instance, sighted through a telescope)
are referred; but even in special relativity, rigorously rigid bodies do not
exist generically and, contrasting with distances and frequencies, there is no
‘fundamental’ absolute goniometer. Indeed, a rigid body requires that the material
properties and the distances of its points be the same at all times; and their world
lines must be parallel, a requirement which can be fulfilled only if it is inertially
at rest. One must make do with actual bodies, with a finite elasticity and estimate
and monitor their lack of rigidity and its effect on the measurement. Note also
that the direction of a light beam at the instrument is affected not only by the
position of the source but also by gravitational effects on the propagation; for this
reason accurate astrometry is inextricably linked with the gravitational deflection.
Since for a generic star in the sky, the photon trajectory is displaced by the Sun
by approximately m e, at 1 AU the deflection &~ 1078 = 2 x 103" must be fully
integrated into GAIA’s analysis; considering its very large data base, a very good
measurement of y is expected.

2.3.2 Techniques

Measurements of angles has always had a crucial role in traditional astronomy,
beginning with Erathostenes’ estimate of the radius of the Earth [12]. The optical
resolution of the naked eye, ~ 1’ = 0.3 mrad, has been drastically overcome in
the seventeenth and eighteenth centuries with graduated circles, built by clever
and patient craftsmen, especially in England. J Horrox was able to divide a 3 ft
staff into 10 000 parts, each about 0.1 mm wide. By about 1820, graduated circles
were achieving accuracies better than a second of arc, to be compared with the
daily parallax of the Sun of 16.12” [9]. The measurement of the yearly parallax
of 61 Cygni, with a parallax of 0.292”, was announced by F W Bessel in 1838:
this was a milestone in three-dimensional astronomy and truly made astrophysics
possible. At a distance of 1 pc, the parallax—the angle subtended by 1 AU—is
1”; inversely, with an accuracy of 10 pas = 107> parallactic distances up to
10° pc—further than the whole galaxy—will be available.

The main astronomical realization on the ground of angular measurements is
Very Long Baseline Interferometry (VLBI), based upon a ‘rigid’ body—the Earth
itself—which rotates with a ‘constant’ angular velocity wg. Very schematically,
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Radio
source

Figure 2.2. In VLBI, two radiotelescopes A and B, separated by the baseline L, measure
the phase delay T = L - n/c for a source in the direction n. In the body-fixed frame,
n = (n-®®+ n is the sum of a constant component along the rotation axis and
a part n| which varies sinusoidally with the rotation period. Accordingly, the delay
T = 10 + 71 cos(wt + ¢) is the sum of a constant and a periodic contribution.

two (or more) large radio antennas at the far-away points A and B separated by
a vector L—the baseline—point to a radio source in the direction n. Within
a limited bandwidth and a wavelength >~ A, electromagnetic wavefronts are
received at the two stations with a delay 7 of the order of L, consisting of a
constant part and a part with the period of a day (figure 2.2). With sophisticated
software, the two trains are correlated and t(¢) is determined. From the delays
corresponding to the two sources, their angular separation can be determined.
A phase error of the order of unity implies an error in the delay o ~ A,
corresponding, with L = 10000 km and at 30 GHz, to an angular accuracy of
10~ rad = 0.2 mas. The error is proportional to 1/L: for better performance and
coverage, VLBI antennas in space have been planned and built. In differential
VLBI, the angular separation between two sources is measured, realizing an
accurate goniometer.

Clearly, a VLBI astronomical ‘goniometer’ requires accurate knowledge
of (a) the rotation vector wg and (b) the effect of the relative motion of the
two tectonic plates on which the stations A and B stand. The latter is, even
conceptually, a delicate task, since it requires establishing a ‘rigidly’ rotating
Cartesian coordinate system S with the origin at the centre of mass of the Earth,
with respect to which the motion of each plate is known. This is usually done by
requiring that, in S, the overall mean tectonic motion vanishes. A large, world-
wide effort has allowed the routine realization of these requirements, resulting in
errors in the rotation rate wg smaller than 1 mas y~!. The details of this procedure
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Table 2.2. Three projects of space astrometry: past (HIPPARCOS) and future. The average
accuracy in angular position for objects up to a given visual magnitude are given in the third
and fourth columns, the last column gives limiting visual magnitude.

Number Accuracy Limiting
Mission Launch  of stars (in mas) AtMag. magnitude.
HIPPARCOS (ESA) 1989 12x10° 1 9 12
SIM (NASA) 2009 ~ 10* 0.004 13 20
GAIA (ESA) 2012 ~ 107 0.010 15 20

are complex, highly technical and dependent on the required accuracy: let it
suffice to say here that VLBI inextricably links three different areas: positional
astronomy of the radio sources, the rotational motion of the Earth and plate
tectonics. VLBI is an important part of space geodesy. Angular resolutions of
~ 10 pas in the angular separation can be achieved.

2.3.3 Space astrometry: GAIA

In the much more important optical band, due to the atmospheric scintillation near
the ground, accurate astrometry needs instruments in space: they have achieved
huge improvements over ground astrometric telescopes. After the milestone
achievements of the Hipparcos mission of the European Space Agency (ESA),
several projects are being planned, with the purpose of plotting a map of the sky
with a very large number of optical astronomical sources and a very high accuracy
(table 2.2). Note also that with a simple homogeneous distribution of sources, an
increase by a factor 10 in angular accuracy implies an increase by a factor 1000
in the number of objects, with a huge increase in complexity and computational
load.

Figure 2.3 shows the optical bench of GAIA—a follow-up of Hipparcos—
a cornerstone of the ESA. It collects light with two large rectangular mirrors
(ASTROI1 and ASTRO2) ‘fixed’ in the equatorial plane of a spacecraft, spinning
at the angular velocity 60” s~! (a period of 6 h). Their longer size (along the
equator) is d = 1400 cm. A precessional motion allows covering the whole sky.
Their axes are separated by an angle I' = 106°: the sources in their fields of
view are brought onto the same focal plane, mapping angles into distances. As
the spacecraft rotates, a large CCD array detects the motion of all the images
across the plane and their distances [13]. At the end of the mission, all angular
measurements are integrated into a single sky map.

I confine myself to two general remarks, just to give an idea of the
fundamental limits of such an instrument and the integrated character of the
mission. First, the required accuracy of 10 pas = 5 x 107! rad places severe
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Supporting

CCD array Beam combiner strut

on focal plane

Figure 2.3. The concept of GAIA’s astrometric optical bench. The photons collected
by the two main rectangular mirrors ASTRO1 and ASTRO2—d = 1400 cm wide and
' = 106° apart—are brought onto the beam combiner (by the secondary (SEC) and the
tertiary (TER) mirrors) which, after a reflection on the beam combiner and the mirror M,
sends them onto the focal plane for detection by the CCD array. For simplicity, only rays of
the first beam are given in bold: they are reflected on the secondary SEC1 and the tertiary
TER1 mirrors below ASTRO1. Opposite the main mirrors are the two main components
L1, Ly of the laser metrological system to measure I'; the three supporting struts are also
shown. Figure kindly provided by F Mignard.

constraints on the rigidity of the optical bench. At time scales shorter than the
rotation period, the fundamental angle I' must be constant to 1 pas, which in
turn, imposes a high thermal stability: an interferometric laser system on board
is needed to provide a measurement of I". For longer times, similarly to VLBI,
the rotation frequency is included, together with the angular data, in the set of
parameters to be determined. Second, the diffraction pattern of a point source,
with width A/d ~ 100 mas, is 10000 times larger than the required angular
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accuracy 10 pas. This impressive hindrance is overcome by scanning each source
many times during the mission and relying on the stability and a good knowledge
of its profile. The resulting attainable fraction of A/d is essentially determined
by the shot noise, i.e. by the total number of photons N received from a single
source; in turn, this sets requirements on the duration of the mission and the width
of the two fields of view.

2.4 Frequency

2.4.1 Fundamentals

An atomic frequency standard is based upon a microscopic quantum system
capable of sharp energy states, which can control a generator of electromagnetic
waves. At a fundamental level, its stability is ensured by the Strong Equivalence
Principle, according to which the ‘constants’ of local physics do not depend upon
time and place. A violation of this principle could show up in a disagreement
between frequency standards of different nature—none has been found so far.
The shift detected as an electromagnetic signal transfers a frequency from
one standard | to another , at a different place, has a special-relativistic

component

w2 1—U12 1/21—1)2'

w1 1-— U% 1—v;-
where k is the propagation unit wavevector. In addition to the ordinary Doppler
effect O(v) (second factor), there is the transversal effect O (v2) (first factor),
present even if the distance between | and » does not change. There is also
a gravitational shift; e.g. photons detected on the Earth at an altitude 4 above
the source are redshifted by Aw/w = hg. In the solar system, with a
gravitational potential per unit mass U, the fractional Doppler shift is of order
AU =~ mg/r ~ v>. Note that the distinction between the gravitational shift
and the transversal Doppler effect is not invariant: in a freely falling frame, there
is no gravity acceleration but the velocities of the source and the detector are
different. In interplanetary propagation, where the potential and the kinetic energy
are generally of the same order of magnitude, the two effects are comparable.
The proper way to obtain the frequency shift in the solar system is a single and

exact description, involving the two four-velocities v of the transmitter and the
receiver, and the null four-vector £ of the parallely propagated photon; then

O

2.7

D

o1 _ Lamk!') 29
w3 [guvk#vV]s

This expression can be proved on the basis of the definition of null geodesics [18]
and has an obvious physical interpretation: g,,k*v" is proportional to the photon
energy, as measured by an observer with four-velocity v*.
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At the cost of looking naive, I wish to remind that, in relativity, physical time
is a local quantity and global clock synchronization is, in principle, impossible.
There is, however an interesting case of approximate synchronization in the
neighbourhood of the Earth. The geoid is defined as a surface where the total
gravitational potential (per unit mass)

Ur=U — Jwir?sin®6 (2.9)

is constant. The last term is the centrifugal potential, a function of the distance r
from the centre and the colatitude 6; U is the gravitational potential per unit mass
of the Earth, including the oblateness contribution. For all clocks at rest on one
such surface (in the rotating system), the relation between the proper time s and
the coordinate time ¢

ds? = dr*(1 = 2Ur + ) (2.10)

is the same; hence, the global coordinate ¢ is synchronous with their proper times.

2.4.2 Techniques

The electromagnetic Doppler effect in the radio band has, of course, many
industrial applications, in particular to measure fluid velocities. To obtain the
frequency displacement w(t) — wp of the received signal s(¢) from the main
oscillator frequency wg, a phase-locked receiver is needed. In the traditional
version, it is based upon a Voltage Controlled Oscillator (VCO) which, under an
input z(¢), produces an output r(¢) with frequency proportional to its amplitude.
A closed-loop receiver is obtained when the input z () is the low-frequency part of
the beat signal between r(¢) and s(¢). For a better performance, especially with
a large dynamic range of the incoming frequency, an open loop is used, which
continuously records the electric field of the incoming wave with a time resolution
better than a period and evaluates its instantaneous frequency, referenced to the
standard. In the acquisition phase, when the incoming frequency is not known
well, the oscillator frequency is swept up and down in a limited bandwidth, until
the incoming carrier is found and lock is achieved; then the ‘tracking’ phase
follows [16].

The use of Doppler measurements as a tool for fundamental physics in space
has been made possible by the developments of extremely accurate frequency
standards (figure 2.4). The main one, which is currently available and operational
for radio astronomy and space, is the hydrogen maser, a microwave cavity tuned
to the hyperfine frequency splitting vp = 1, 420, 405, 751.68 Hz of the ground
level of atomic hydrogen due to the spin interaction between the electron and
the nucleus. Better performances are offered by laboratory devices, like the
Superconducting Cavity Stabilized Oscillators (SCSO). Fractional changes are

measured by
t) — d
yiey = LD =@ <a)=27‘[v= _¢>. (2.11)
[0 dt
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Figure 2.4. Measured Allan deviation oy (7), as a function of the integration time z, of
frequency standards based upon hydrogen masers (MS1 and MS2) and cesium oscillators
(CO1 and CO2), relative to the main frequency standard kept at the National Bureau of
Standards (Boulder, USA). Long-term drifts have been fitted out for the hydrogen maser
signals.

To define its accuracy, the averaging time t must be specified: the relevant
quantity is the running average

oty = /’*f/z _ P +T/2) — ¢t —1/2)
t

dr’' y(t)
—1/2 0T

2.12)

also expressed in terms of the phase ¢. The measure of its statistical fluctuations
must take into account the fact that we can only measure frequency changes, not
absolute frequencies: this is accomplished with the Allan variance [2]

o7 (t) = 3{[ye(t + 1) — y: (D). (2.13)

Commercial hydrogen masers reach a stability better than a part in 10! for
averaging times of the order of 1 h: in the laboratory, using different standards,
longer averaging times can be attained (figure 2.4). Of course, a frequency
standard can also be used as a clock, with an accuracy for the measurement of
an interval T equal to or = Toy,(T). It should be noted that the accuracy of a
clock depends in an essential way on the length of the measured interval.

The scientific use of Doppler measurements involving microwave links to
interplanetary spacecraft has been made possible by two great technological
advances. First, continuous improvements in NASA’s Deep Space Network
(DSN), which operates several large dish antennas at three locations widely
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Table 2.3. The Deep Space Network frequencies (in MHz) of coherent uplink (1) and
downlink () carriers and their conversion ratios R (a rational number). Two nearby
downlinks in K, -band are used in the Cassini mission.

S-band X-band K,-band

T 7175 34316
J 2299 8430 32034 32029
R 880/749  3344/749  14/15

spaced in longitude (Goldstone, California; Madrid, Spain; Canberra, Australia);
in particular, at Goldstone the new, advanced DSS25 station is only devoted to
science. Second, higher-frequency bands are being used (see table 2.3): at DSS25
the new K, band (table 2.3) has been successfully implemented with a very
sophisticated instrumentation. The Cassini spacecraft is the first interplanetary
probe to use this band: the Italian Space Agency has provided on board the
complex high-gain antenna (4 m in diameter) and the frequency transponder. In
the current, two-way configuration, a Doppler measurement uses a stable and very
narrow spectral line controlled on the ground by a frequency standard: this is the
carrier for transmission. On board, a coherent carrier is locked to the arriving
beam and sent back to the ground, where the total frequency shift y(¢) (including
both the up- and down-link) is measured as a function of time.

2.4.3 The Cassini conjunction experiment

Cassini is a huge interplanetary probe launched in October 1997, due to arrive at
Saturn in July 2004 for an exploration of the Saturnian system, which will last
4 yr (at least). In normal conditions, Cassini’s frequency stability requirement
for the new K, link is oy(r) = 3 x 107! for 1000 < = < 10000 s,
including all disturbances, both at the station and the spacecraft, and those due
to the traversed media (the atmosphere, the ionosphere and interplanetary space).
This corresponds to an accuracy in velocity o, = 107 cm s~! and, over
1000 s, an accuracy of 1 mm in the change of distance. For the acceleration
the accuracy is oy (7)c/T = 10~7 cm s~2. It is important to note that, contrary
to the radar technique, with this method absolute distances are not accessible.
Nothwithstanding the novelty, after some instrumental problems, in good working
conditions (i.e. in absence of manoeuvres which produce unknown displacements
in the centre of phase of the antenna, and when the weather at the ground station is
only slightly perturbed) Cassini’s system works fairly well and this specification
is often fulfilled.
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According to general relativity, the deflection of electromagnetic waves by
the Sun is twice the Newtonian value

meo —6Ro
IN=2—=4x107"—=. 2.14
N b X b (2.14)

Writing
d=(0+y)dN (2.15)

the general relativity value corresponds to y = 1. In both cases, the deflection is
inversely proportional to the impact parameter b of the beam, bounded below by
the solar radius Rg. Therefore, this fundamental test can discriminate between a
scalar and a tensor theory of gravity: a small scalar field, a remnant of the dilaton
field ¢ of primordial cosmology, may contribute at the present time. The value of
y — 1 is an indication of the mixture between a tensor field of rank 2 and other
fields which determines gravity; since in the Newtonian case y = 0, it is not a
surprise that in the scalar case y < 1. Theoreticians have not yet been able to
construct a clear-cut and computable fundamental theory for this interaction: in a
simple version, where ¢ is coupled to matter through a potential V (¢), one finds
(see Nordtvedt’s chapter (5) in this volume, formula (5.11)):

1 (dnV(p))’
y—l_—E(id(p ) 2.16)

As the Universe expands, ¢ tends to the minimum of V (¢) and y — 1 becomes
small, but remains negative. The deficiency may be of order 107°—10~7 ( [10]
and cited papers). Measuring this tiny discrepancy, therefore, is of fundamental
importance for the understanding of the nature of gravitation. The same remnant
scalar field produces also a change in the other PPN parameter g, a violation of
the Weak EP and a change in time of the gravitational constant at the cosmological
scale.

Traditionally, the deflection parameter y can be obtained directly, by
comparing the angular distance between two celestial sources in the sky with
and without the Sun nearby (as done for the first time during the solar eclipse
of 1919 [11]). However, one can also use the fact that a deflected path implies
that the transit time Az between the emitting and receiving stations is larger
than the geometric value and changes with time; this is called the Shapiro effect.
Both methods have been actively pursued and have confirmed the predictions of
general relativity with an accuracy o, ~ 1073 [15,20]. But there is a third way,
which relies on the obvious fact that a deflection changes the angle between the
direction of propagation of the photons and the velocities, of order v ~ 1074,
of the emitting and receiving stations (details in [5]). A time-dependent Doppler
shift ygr of order v§ is produced: numerically and, in general, (figure 2.3),

1 R
YGR A %8 x 10710 <7®) . (2.17)
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Figure 2.5. The gravitational signal ygr and the available 18 passages during Cassini’s
cruise to Saturn, as a function of days from solar conjunction, which occurred on 21 June
2002.

Naively equating this signal to the Cassini stability requirement oy = 3 x 10713,
at grazing incidence, one gets an error o, ~ 1073,

The main hindrance to attain an accuracy of this order and the reason why
the experiment has not been done earlier is the fact that the beam must traverse
the solar corona, a dense, unmodellable, unpredictable and fast-varying plasma: it
produces an outward deflection, at a small impact parameters even larger than the
gravitational effect (see [4], in particular figure 2.1). It can be easily shown that, if
Ne(t) = [ ds ne is the total electron plasma columnar content encountered along
the beam (up and down) by a photon emitted at the time ¢ from the ground station,
the Doppler observable y(¢) is affected by a term o dN./(w?dr), inversely
proportional to the square of the carrier’s frequency w. I recall that no frequency
measurement is carried out on board; moreover, the time scale of the experiment is
comparable with the round-trip light-time, so that the electron columnar contents
(mainly localized near the Sun) in the uplink (Ne4 (¢)) and the downlink (Ney (1))
are independent, and generally different. The observable y(z) is, therefore, the
sum of three contributions: the non-dispersive part ynq(¢), which includes the
gravitational signal, y4(#) and y, (¢). In Cassini’s experiment, for the first time,
the elimination of all the plasma contributions has been made possible with the
use of a multi-frequency link. As indicated in table 2.2, two carriers, in the X- and
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K, -bands, respectively, are transmitted to the spacecraft; the X uplink, besides the
normal X downlink, controls on board also a side channel in the K, band; with the
complete up and down K, link we have three independent observables, which can
be conveniently labelled as yxx(7), yxk(¢), ykk (t). They are linear combinations
of ynd, the uplink and the downlink plasma contribution. With a simple linear
system the latter ones can be eliminated. What is left, ynq(#), contains not only
the signal ygr(#) but also other contributions, in particular from the troposphere
and the orbital dynamics.

Details of the error budget are given in [14]. A 30-day experiment was
carried out from 6 June to 7 July 2002 and has confirmed that the plasma
compensation system works. In [6], other aspects of the experiment are discussed,
in particular the important role of the dynamical model: the non-gravitational
forces acting on the spacecraft perturb its motion quite appreciably and must be
suitably modelled and determined. At the level 1o, the result [6]

y—1=(2.14£23)x 1073 (2.18)

does not show any violation of general relativity but with an accuracy greater by
about a factor 50 over previously published experiments.
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Chapter 3

Frame-dragging and its measurement

Ignazio Ciufolini
Dip. Ingegneria dell’Innovazione, Universita di Lecce, Via
Monteroni, 73100 Lecce, Italy

3.1 Some historical background on the measurement of
gravitomagnetism and the gravitational field inside a
rotating shell

This is just a brief introduction to past and present experiments to measure
gravitomagnetism and the problem of the gravitational field inside a rotating shell:
for a more exhaustive introduction we refer readers to Ciufolini and Wheeler [1].

In 1915, Einstein published his theory of general relativity. Among the
sources of inspiration was Mach’s idea on the origin of inertia and inertial forces
[1,2]. Mach thought that centrifugal and inertial forces were the result of rotation
and accelerations with respect to the masses in the universe.

Influenced by Mach, several investigators studied the problem of the
gravitational field inside a rotating shell. In a seminal paper of 1918, Thirring
published a solution of the Einstein field equation representing the metric inside
a rotating shell to first order in M /R (mass over shell radius) and to first order in
w, the angular velocity of shell [3]. In 1966, Brill and Cohen derived the metric
inside a shell with an arbitrary mass and to lowest order in angular velocity [4].
An extension of the Brill-Cohen results to higher orders in @ was then published
in 1985 by Pfister and Braun [5, 6].

Nevertheless, the exact solution representing the spacetime geometry inside
a shell with an arbitrary mass and rotating with an arbitrary angular velocity is
still unknown. An exact solution inside a rotating shell would give us insight into
the role of the ‘Mach principle’ in general relativity.

Indeed, the level at which general relativity satisfies Mach’s idea on the
origin of inertia has been discussed in a large number of books and papers
(see, for example, [1,2]). However, general relativity satisfies at least a ‘weak
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manifestation’ of Mach’s ideas: the dragging of inertial frames. Indeed, in
Einstein’s gravitational theory, the concept of an inertial frame has only a local
meaning and a local inertial frame is ‘rotationally dragged’ by mass—energy
currents because moving masses influence and change the orientation of the axes
of alocal inertial frame, i.e. of the gyroscopes; thus, a current of mass such as the
spinning Earth ‘drags’ and changes the orientation of the gyroscopes with respect
to the distant stars.

It might be surprising to know that the first experiments to detect the
gravitational influence of the rotation of a mass and to measure the dragging of
a gyroscope by a rotating body were performed well before the development of
Einstein’s theory of general relativity [1].

In 1896, Benedikt and Immanuel Friedlander [8] tried to measure the
dragging effect due to a rapidly rotating, heavy fly-wheel on a torsion balance.
Immanuel Friédlander wrote:

In the same way as centrifugal force is acting on a static wheel due
to the rotation of the heavy earth and the cosmos, there should, I
thought, appear on accordingly smaller scale a centrifugal force action
on bodies near moving heavy fly-wheels. Would this phenomenon be
detectable. ...

In 1904, August Foppl [9] tried to measure the dragging effect on a gyroscope
due to the rotation of Earth: he reached an accuracy of about 2% of the Earth’s
angular velocity. However, the general relativistic dragging effect on a gyroscope
at the surface of the Earth (at a European or US latitude) is about 2 x 10710 of its
rotation rate! These experiments, performed before the development of general
relativity, were inspired by Mach’s ideas on inertia.

In 1916, de Sitter [10] calculated the tiny shift in the perihelion of Mercury
due to the rotation of the Sun, a particular case of the shift in the pericentre of
an orbiting test particle due to the angular momentum of the central body, see
section 2. This shift of about —0.002” /century is about 5 x 107> times smaller
than the standard general relativistic Mercury precession of ~ 43 /century and is
too small to be measured.

In their well-known 1918 paper, Lense and Thirring [7] calculated the
gravitomagnetic secular perturbations of the moons of various planets. In
particular, the V moon of Jupiter has a considerable gravitomagnetic secular
precession; however, the observations do not yet allow this effect to be separated
out and measured.

In 1959, Yilmaz [11] proposed using polar satellites to detect the
gravitomagnetic field, thus avoiding the effects due to the non-sphericity of the
Earth’s gravity field. In 1976, Van Patten and Everitt [ 12] proposed measuring the
Lense—Thirring nodal precession using two drag-free, guided satellites, counter-
rotating in the same polar plane. The reason for proposing two counter-
rotating satellites was to avoid the error associated with the determination of the
inclination.
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Between 1959 and 1960 [13, 14], G E Pugh and Leonard Schiff
independently proposed an experiment using orbiting gyroscopes: this became
the well-known Gravity Probe-B experiment, or GP-B (launched on 20 April
2004). The Stanford University group has been working for more than 30 years
to make and fly superconducting gyroscopes in an Earth-orbiting satellite [15].
At an altitude of about 650 km, the axis of a gyroscope is predicted to undergo
a gravitomagnetic frame-dragging of about 42 milliarcsec per year. GP-B should
detect the gravitomagnetism of the Earth and measure it to an accuracy of about
1% or less.

Several other experiments have been proposed for measuring the
gravitomagnetic field; for a review, see Ciufolini and Wheeler [1]. Here we only
mention the Foucault pendulum at the South Pole [16], the ring laser gyroscopes
[17] and the orbiting gradiometers. Between 1980 and 1989, the use of gravity
gradient resonant detectors orbiting the Earth [18] and superconducting gravity
gradiometers in a polar orbit [19] was proposed to measure magnetic components
of the Riemann tensor, with the accuracy needed to detect the gravitomagnetic
field. Some indirect astrophysical evidence of frame-dragging was obtained in
1988 by the periastron precession rate of the binary pulsar PSR 1913 + 16 [20].

In 1984 and 1988, we proposed [21] the detection of the gravitomagnetic
field by measuring the orbital drag on non-polar, passive, laser-ranged satellites.
The fundamental idea [21, 22] of this experiment, called the LAGEOS III
experiment, is based on two considerations:

(a) position measurements of laser—ranged satellites, of the LAGEOS (1976)
type (see later), are accurate enough to detect the very tiny effect due to the
gravitomagnetic field—the Lense—Thirring precession; and

(b) to ‘cancel out’ the enormous perturbations due to the non-sphericity
of Earth’s gravity field, we need a new satellite with an inclination
supplementary to that of LAGEOS, and with the other orbital parameters,
a and e, nearly equal to those of LAGEOS.

The accuracy of this experiment was estimated, by several studies and papers [22],
to be, in 1988, of the order of 10% of the Lense—Thirring effect.

In 1998, the LARES experiment [23] was proposed and selected as a phase-
A study by ASI, the Italian Space Agency. This space mission would allow the
Lense-Thirring effect to be measured at the 1% level and is briefly described in
section 3.5.

Between 1995 and 2001, using two laser-ranged satellites, we measured
[24-27,73] the Lense—Thirring effect several times with an accuracy ranging from
about 50% to about 30%. These are described in section 3.5. Between 1998 and
2001, this method provided a direct measurement of the Earth’s gravitomagnetism
with an accuracy of the order of 30%. Indeed, we also report here the latest
measurement of the Lense—Thirring effect, obtained in 2001 with the LAGEOS
satellites using nearly 8 years of data. This 2001 result fully confirms and
improves our previous measurements of the Earth’s frame-dragging.
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On 20 April 2004, the Gravity Probe-B experiment was launched in order to
try to measure the Earth’s frame-dragging with 1% accuracy or better.

In 2004, accurate measurements of the Earth’s Lense—Thirring effect have
been obtained using the recently released Earth’s gravity field models generated
by the space missions CHAMP and GRACE and only the nodes, of the LAGEOS
satellites by analysing about 10 years of data. The accuracy of this recent
measurement has been less than 20% [73] (see section 3.5.3). From this
experiment we have concluded that the Lense—Thirring effect exists and its
experimental value is within ~ 20% of that predicted by Einstein’s theory of
general relativity. However, the most recent measurement, in full agreement with
the prediction of general relativity, has an accuracy of only about 5% [75].

3.2 Frame-dragging, the weak-field slow-motion analogy: an
invariant characterization of gravitomagnetism

In the weak-field slow-motion approximation, a formal analogy with
electrodynamics has been developed by using the Einstein field equation and
the geodesic equation. In geometrodynamics [1, 2], in the weak-field slow-
motion approximation for a stationary, localized, mass—energy distribution, the
(07) components of the Einstein field equation can be written in the Lorentz gauge:
Ahg; = 16mpv'. This is formally analogous to the Maxwell-Ampere equation for
the vector potential of electrodynamics in the Coulomb gauge: AA! = —4mp,v'.
h has been called the gravitomagnetic potential. The gravitomagnetic field [1,28]
has then been defined as H = V x h. Furthermore, by the geodesic equation for
a test particle of mass m in the weak-field slow-motion limit, one has then:
2x dx
mﬁ Em(G—i—ExH).

This is formally analogous to the Lorentz force where G = —M/|x|*% is the
standard Newtonian acceleration and H is the gravitomagnetic field (see [1]).

This is the weak-field slow-motion analogy of the gravitomagnetic field
in geometrodynamics with the magnetic field of electrodynamics. However, a
characterization of gravitomagnetism independent of any approximation has also
been proposed [1,28] and is described later.

One might then describe gravitomagnetism as all those phenomena
generated by mass—energy currents and, acting as a source on the right-hand side
of the Einstein field equation. However, in the presence of any mass, one can
always observe a mass current in a boosted frame. Therefore, a more rigorous
definition of gravitomagnetism has been proposed.

This characterization of gravitomagnetism is independent of the frame and
the coordinate system used and is based on spacetime curvature invariants built
using the Riemann curvature tensor (see later). It is also independent of any
approximation.
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In electromagnetism, in the frame in which an electric charge is at rest,
we only have a non-zero electric field but no magnetic field. However, if we
consider an observer moving relative to the charge, in this new frame we have a
magnetic field. Similarly, in general relativity, in the frame where a mass is at
rest, the gravitomagnetic potential & is zero. However, if we consider an observer
moving relative to the mass, in the local frame of the observer we have a non-zero
gravitomagnetic potential 7.

Therefore, following the method for characterizing curvature singularities
and classifying different spacetimes [30], one should inspect the invariants of the
spacetime. However, in a vacuum, as a consequence of the Einstein field equation,
the Ricci curvature scalar R = R{ is identically equal to zero. Another scalar
invariant is the Kretschmann invariant Ryg;y R*PIv . However, in the case of a
metric characterized by mass and angular momentum, such as the Kerr metric,
the Kretschmann invariant is a function of M/r3 and J/r*, with the leading term
~ M/ r3, therefore, this invariant is different from zero in the presence of a mass
M, whether or not there is any angular momentum.

Let us then again use the formal analogy between electromagnetism and
weak-field general relativity [31]. In electromagnetism, to characterize the
electromagnetic field, one can calculate the scalar invariant —% apF b — g2
B2, which is analogous to the Kretschmann invariant

2 2
M J
RaﬁuuRaﬂMV ~ (I‘_3) +C <r—4)

(see later). However, in electrodynamics, one can also construct the scalar
pseudoinvariant %Faﬁ *Fef = E . B where * is the dual operation: *F®} =
%8”“9“" F,,». We observe that if we have only a charge ¢, in its rest frame we have
only an electric field, and the invariant Fyg *FB is zero, therefore, even in the
frames where B # 0 and E # 0, this invariant will be zero. However, if in the
rest frame, we have a charge ¢ and a magnetic dipole m, in this frame we have, in
general, Fupg *F ap # 0 and this invariant will, of course, be different from zero in
any other frame.

Therefore, to characterize the spacetime geometry and curvature generated
by the mass—energy currents or by the intrinsic angular momentum, J, of a central
body (in [1] it is shown that, in the weak-field limit, the angular momentum
generated by the mass—energy currents plays a role in general relativity analogous
to the magnetic dipole moment generated by a loop of charge current in
electromagnetism), we should look for an analogous spacetime invariant.

This invariant should, therefore, be built out of the dual of the Riemann
tensor * R¥PHY = %so‘ﬁ‘”’ R5,, ‘squared’ or ‘multiplied” by Rygyv. This pseudo
invariant is of the type [1,28] %8“'35’0 Ré‘; Rypuv. Because of the formal analogy
with electromagnetism and since this pseudo invariant, *R - R, is built using the
Levi Civita pseudo-tensor, it should change sign for time reflections ( — —f)
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and, therefore, it should be proportional to J. A list of all the possible spacetime
invariants built out of the Riemann tensor and its dual is given in [30].

The invariant *R - R in general relativity is especially meaningful. In fact,
whereas in classical electrodynamics *F - F characterizes the electromagnetic
field, but not the spacetime geometry 748, in geometrodynamics the invariant
*R - R characterizes the gravitational field and, therefore, the spacetime geometry.

Indeed, by calculating *R - R, the result is (for simplicity we just give here
the weak-field lowest-order, result; for the general, exact, expressions of R - R
and *R - R, and related discussions see [1,28,29]):

" JM
R-R:288—70059+--- 3.1
r
whereas the Kretschmann invariant R - R, for the Kerr metric, is in the weak-field
limit,
M? J?
R-R~48| — —2l=cos’6 | +--. (3.2)
r r

Since the external gravitational field of a stationary black hole is determined
by its mass M, charge Q and intrinsic angular momentum J and since, for
the Kerr—-Newman metric, the invariant *R - R is [29] still proportional to
J, the previous result is quite general in the case of black holes and is
valid, asymptotically, in the weak-field limit for any quasistationary solution.
Furthermore, the previous result, which was obtained in Einstein theory, is
generally valid in any metric theory of gravity (with no prior geometry) not
necessarily described at the post-Newtonian order by the Parametrized Post-
Newtonian (PPN) formalism [1,28,29]. This can be seen in two ways. Let us
first write the weak-field, slow-motion expression of an asymptotically flat metric
of a metric theory of gravity in the form:

go0 =~ — 1 4+ 2U + higher-order terms
gik = 8ix (1 + 2U) + higher-order terms

and
g = (801, 802, 803)-

Then, the pseudo invariant *R - R can be easily calculated at the lowest order to
be
*R-R >~ V?[VU - (V x g)] + higher-order terms.

In the case of a static distribution of matter and a corresponding static metric, with
g = 0, we then have *R - R = 0. However, for a stationary distribution of matter
and a corresponding stationary metric, with g # 0, for example with g ~ J, we
have *R - R # 0. In the first case, for a static distribution of matter and a static
metric, with a boost with velocity v, we have g ~ vU; however, *R - R is, of
course, still zero: *R-R ~ V2[VU -(V xvU)] = 0. A second argument confirms
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the validity of this result in any metric theory of gravity not necessarily described
by the PPN formalism. For a generic source, in any metric theory of gravity (with
no prior geometry), the full expression for the scalar *R - R must be dependent
on some of the intrinsic physical quantities characterizing the source, such as the
total mass—energy of the source, its intrinsic angular momentum, its multipole
mass moments etc. i.e. it must be dependent on some integral of the mass—energy
density, &, of the mass—energy currents, su’, etc. In particular, since *R - R must
change sign for time reflections, its full expression for a generic source must be
proportional to some odd function of the intrinsic mass—energy currents su’, . ..
(which cannot be eliminated by a change of origin or a Lorentz transformation),
characterizing the system, such as the intrinsic angular momentum of the source.

Therefore, independently from the field equations of a particular metric
theory, the pseudo invariant *R - R may be used to determine the existence and
presence of ‘intrinsic’ gravitomagnetism in that metric theory of gravity. Indeed,
using this invariant *R - R ~ (JM/ r7) cos 8, we can determine whether or not
there is a gravitomagnetic contribution to the spacetime geometry and curvature.
We just need to calculate *R - R; if it is different from zero, we have a mass—
energy current contribution to the spacetime curvature; if it is zero, there is no
mass—energy current contribution. We do not need to concern ourselves with the
local Lorentz transformation or any other frame and coordinate transformations
on a static background, either *R - R is zero, as in the Schwarzschild case, or it is
different from zero, as in the Kerr case. Of course, a spacetime with *R - R # 0
is qualitatively different from a spacetime with *R - R = 0, whatever the frame
and coordinate transformations.

In conclusion, we may say that gravitomagnetism [1, 28, 29] is that
phenomenon in which the spacetime structure and curvature are determined and
affected not only by mass—energy but also by mass—energy currents relative to
other matter, i.e. mass—energy currents not generable or eliminable with a Lorentz
transformation (for example the intrinsic angular momentum of a body that cannot
be generated or eliminated by a Lorentz transformation). This characterization of
gravitomagnetism is independent of the frame and coordinate system used and is
only based on spacetime curvature invariants.

3.3 Gravitomagnetic phenomena in test gyroscopes, test
particles, clocks and photons

Einstein’s theory of general relativity [1, 2] predicts the occurrence of peculiar
phenomena in the vicinity of a spinning body, caused by its rotation. The period
of a particle orbiting around a spinning body in the same direction as the rotation
of the body, i.e. ‘co-rotating’ with the central object, is longer than the period of
a particle orbiting at the same distance but in the opposite direction i.e. ‘counter-
rotating” with respect to the spin of the central object. The difference between the
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co-rotating and counter-rotating orbital periods is
J
At =47 —. 3.3)
M

Furthermore, a particle orbiting around a spinning body has its orbital plane
‘dragged’ around the spinning body in the same sense as the rotation of the body.
Small gyroscopes that determine the axes of a local free-falling inertial frame,
where ‘locally’ means that the gravitational field is ‘unobservable’, rotate with
respect to ‘distant stars’ due to the rotation of the body.

Thus, an external current of mass, such as the spinning Earth, ‘drags’ and
changes the orientation of gyroscopes. Indeed, a test gyroscope has a precession
Q with respect to ‘an asymptotic inertial frame’, in a weak field with angular
velocity:

9 Ly _ 243U 0]
2 |x 3

where J is the angular momentum of the central object and H its gravitomagnetic

field generated by J (see section 3.2). This is the ‘rotational dragging of inertial

frames’ or ‘frame-dragging’ (‘dragging’ as Einstein called it).

The whole orbital plane of a test particle is itself a type of enormous
gyroscope (for motion under a central force) dragged by the gravitomagnetic field.
Indeed, the orbit of a test particle around a central body with angular momentum
J has a secular rate of change in the longitude of the line of the nodes (intersection
between the orbital plane of the test particle and the equatorial plane of the central
object), discovered by Lense—Thirring (1918) [7], in a weak field given by:

(3.4)

QLense—Thirring _ 2.] (35)
[a3(1 — ¢2)3/7]

where a is the semimajor axis of the test particle and e its orbital eccentricity.
The pericentre of an orbiting test particle is also a type of enormous gyroscope
(for motion under a central force ~ 1/r2). Indeed, the orbit of a test particle has a
secular rate of change in the mean longitude in the orbit Lo (i.e. Lo = n - At + @,
where n = 2 /P is the satellite’s mean motion, P its orbital period, At the
interval of time from passage of the satellite through the pericentre, ® = Q+w the
longitude of the pericentre and w is the argument of the pericentre, i.e. the angle
from the equatorial plane to the pericentre) and of the longitude of the pericentre
@, (defining the Runge—Lenz vector):

&:)Lense—Thirring _ 2](.} — 3 cos Ii)

= i (3.6)

where [ is the orbital angular momentum, a unit vector, of the test particle, and
its orbital inclination (angle between the orbital plane and the equatorial plane of
the central object).
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Between 1995 and 2001, the Lense—Thirring effect was measured with about
30% accuracy using the LAGEOS and LAGEOS 1I satellites [21,22,24-28], see
section 3.5.2.

However, test particles and gyroscopes are not the only objects affected by
the spin of the central object: photons and clocks are also affected. A photon
co-rotating around a spinning body takes less time to return to a ‘fixed point’
(with respect to distant stars) than a photon rotating in the opposite direction.
In the Kerr metric [1] characterized by the mass and angular momentum of
the central object, a fixed point can be determined by constant Boyer—Lindquist
spatial coordinates, i.e. by the constant spatial coordinates of the weak-field slow-
motion metric (see (3.7)). Operationally a fixed point can be realized by a small
telescope always pointing toward the same distant star, always oriented toward the
centre of the spinning body and at the same distance from it by using gradiometers
and rockets attached to the telescope. For example, around the spinning Earth,
the difference between the travel time of two pulses of electromagnetic radiation
counter-propagating in the same circuit would be

% 8oi dxf ~ _871‘]@
800 r

or ~ 1071% [1,32]. Since light rays are used to synchronize clocks, the
difference in the travel time of co-rotating and counter-rotating photons implies
the impossibility of synchronizing clocks all around a closed path around a
spinning body. The behaviour of light rays, analysed in this chapter, and the
behaviour of clocks around a spinning body are intimately connected. Let
us then briefly analyse the behaviour of clocks around a spinning object. In
several papers, the ‘frame-dragging clock effect’ around a spinning body has
been estimated and space experiments have been proposed to test it [32-36]. We
observe first that to synchronize clocks around a path in a stationary field, we can
use light rays or even very slowly moving clocks, so that the special relativistic
time dilation is a higher-order effect, always at the same distance from the central
spinning body, so that the mass time dilation is equal for both clocks. Thus, when
a clock co-rotating very slowly (using rockets) around a spinning body and at
a constant distance from it returns to its starting point, it finds itself advanced
relative to a clock kept there at ‘rest’ (with respect to ‘distant stars’, see earlier).
Similarly a clock, counter-rotating arbitrarily slowly and at a constant distance
around the spinning body finds itself retarded relative to the clock at rest at its
starting point [1,32]. For example, when a clock that co-rotates very slowly
around the spinning Earth, at ~ 6000 km altitude, returns to its starting point, it
finds itself advanced relative to a clock kept there at ‘rest’ (with respect to ‘distant

stars’) by dn
f&dx"'vﬂ'\/leO_”s
800 r

where go; ~ 2Jg/r? is the Earth’s gravitomagnetic field and Jg = 145 cm? is the
Earth’s angular momentum. Similarly, a clock that counter-rotates very slowly
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around the spinning Earth finds itself retarded relative to a clock kept at ‘rest’
there by the same amount. However, a larger clock effect, of the order of 1077,
has been estimated in [33,34]. Let us explain this apparent disagreement. The
orbital period of a particle or clock freely co-orbiting (along a geodesic) around a
spinning body is longer than the orbital period of a particle or clock freely counter-
orbiting on the same path [33,34], see formula (3.7). The difference between the
two orbital periods, i.e. the difference between the two times read by a clock at
a fixed point (with respect to ‘distant stars’, see earlier) when the two counter-
rotating particles come back to this point after one revolution is ~ 4w J/M, i.e.
around the spinning Earth, is ~ 1.4 x 1077 s [33-36]: this is basically the effect
derived in [33,34]. Nevertheless, the difference between the time read by the two
clocks when they meet again after a whole revolution is still ~ 10716 [32,35,36].

In Einstein’s theory of general relativity, all these phenomena in test
particles, gyroscopes, photons and clocks are the result of the rotation of the
central mass.

3.4 Time delay due to the spin of a central body and inside a
rotating shell

3.4.1 Spin time delay and gravitational lensing

Let us now study null geodesics around a rotating body; in particular, we apply
our results to the behaviour of photons. Null geodesics in the Kerr metric,
also in regard to gravitational lensing and the image’s position, polarization
and intensification, distortion and optical caustic, have been studied in several
papers (see [37-39] and references therein; for gravitational lensing in a strong
Schwarzschild field see [40]). However, here we derive the time delay in
the arrival time of photons due to the angular momentum of the deflecting
body. Using the weak-gravitational-field slow-motion approximation, we also
derive and compare the light deflections caused by the angular momentum and
quadrupole moment of the deflecting body.

By assuming a weak gravitational field and slow motion for the source,
we can write the spacetime metric at the order beyond Newtonian theory,
the post-Newtonian order, in terms of small classical potentials determined by
the distribution and motion of the mass—energy via the solution of Poisson-
like equations, obtained from the weak-field slow-motion limit of the Einstein
equation. If the source is stationary, with mass density p and mass—current density
pvi , in order to study null geodesics, we thus have the following metric [1,47]:

goo=—1+42U
goi = —4V; (3.7
gik = (1 +2U)éix

where §;; is the standard Kronecker delta and, by the Einstein equation, in the
weak-field slow-motion approximation the classical potentials U and V; satisfy
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the Poisson equations: AU = —4mp and AV; = —4mpv;. V;, or —4V; = go;, 1S
the gravitomagnetic potential. As usual, the Newtonian potential U for a central
distribution of the mass can be written as a multipole expansion; i.e. if we only
include the monopole, M, and the quadrupole contributions

M 1 XiXj
U= - + EQijr—5

where Q;; = f(3xlfx} - r'25,'j)p(x/)d3x’ is the standard quadrupole moment
tensor.

For an equilibrium ellipsoid [41, 42], by assuming the outer surface to be
equipotential, in spherical coordinates we have

M [ <R>2 }
U=—|1—-J{— ) Pr(cosH)
r r

where R is the equatorial radius of the ellipsoid and Py = %(3 cos?0 — 1)
is the associated Legendre function. At the lowest order in the flattening
f = (R — Rp)/R, where R, is the polar radius of the ellipsoid, the quadrupole
coefficient, Jo, is Jo = % f+oO(f 2). If p = constant, the quadrupole coefficient
ish=2f+0(2.

The gravitomagnetic potential go;, i.e. the non-diagonal part of the metric

tensor, from AV; = —4mpv;, can be written as
x/ i x/
g0i (X) = —4/ 7'0'()()” (’I) 3y/ (3.8)
—x

where X is the position vector. Far from a stationary source for a spheroidal
rotating body with angular momentum J, we then have

xyz 2 X (3.9)
ST TE '
and, when J = (0, 0, J), in spherical coordinates:
2J
20p = —— sin’ 6. (3.10)
r

Let us derive the time delay and deflection in the electromagnetic waves
due to the spin and quadrupole moment of the central body. The quasi-Cartesian
coordinate system (x, y, z) is the standard isotropic PPN system such that the
coordinate z goes through the observer at Earth, while (X, Y, Z) is a coordinate
system attached to the deflecting body. To relate the coordinate systems (x, y, z)
and (X, Y, Z), we use the Euler angles (¢, 8, y) (see figure 3.1). For simplicity,
we assume the deflecting body to be axially symmetric and Z, by definition, is
the symmetry axis of the body. In such a case, the shape of the body is invariant
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Observer

Lens Plane

Symmetry
Plane

Figure 3.1. Euler’s angles in our notation. S is the angle between the Z-axis of the body
and the z-axis through the observer. y is the angle between the line of nodes and the x-axis
on the lens plane, and ¢ is the angle between the line of the nodes and the X-axis of the
body. The origin of the coordinate systems is placed at the deflecting body.

for rotations of ¢ and we can thus choose ¢ = 0. The rotation from (X, Y, Z) to

(x,y,2)is
X cosy —siny 0 X
Y | = cosBsiny cosfBcosy —sinf y |. (3.11)
Z sinfsiny sincosy cosp Z

We apply transformation (3.11) to the post-Newtonian metric (3.7) and, in
the new coordinate system (x, y, z), we get

dS2 = goo dtz +§l/ dXi d)C]
4J .
+ —3(ycosﬁ —zcosy sinB)dxdt
-
4J . .
— —3(xcosﬁ —zsinBsiny)dydt
-

4J
+ —3(x cos y sin 8 — ysin B sin y) dz dt 3.12)
-
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where _
goo = (—=142U)

i ) (3.13)
gij = (1 +2U)8;;,

and

2 . . .
7= M |:1 5 (5) P <zcos,3 + ycosy sin B +xs1n,6s1ny>
r r r

(3.14)

We can now easily derive the time delay using this metric element (3.12). In
general, in a strong gravitational field, the time delays due to the gravitomagnetic
field and to the non-sphericity of the matter distribution are nonlinearly coupled.
However, in the weak-field slow-motion limit, i.e. J/Mr <« 1 and M/r < 1,
at the post-Newtonian order, we can analyse the two effects separately i.e. the
gravitomagnetic and quadrupole moment time delays.

We have chosen the quasi-Cartesian coordinates such that the emitting and
deflecting bodies have the same x and y coordinates (see figure 3.2) but a
different z coordinate; i.e. the source, lens and observer are aligned. We have
chosen this particularly simple configuration since here we are only interested
in studying the time delay due to the gravitational field of the deflecting body
(mass, quadrupole moment and gravitomagnetic time delay). However, there is
an additional time delay, called the geometric time delay [43, page 143], due to the
different geometrical path followed by different rays. Depending on the geometry
of the system, this additional term can be very large and can be the main source
of the time delay. However, when we compare the time delay of photons that
follow the same geometrical path, we can neglect the geometric time delay, as
in the case of two light rays with the same impact parameter but on different
sides of the deflecting object. For of a small deflection angle with respect to
the coordinate line y = bsina = constant and x = bcosa = constant (see
figure 3.2), the contribution to the travel time delay from the different path length
due to the small deflection is of the order of ~ U2 [1] (to a small deflection angle
of a photon path of the order of §¢p >~ 4M/r corresponds a change in the total
distance / travelled by the photon of the order of 8/ ~ [(4M/r)? and, depending
on the geometrical configuration considered, this delay may need to be included
in the total time delay. In a following paper, we shall analyse the higher-order
time delays and compare then with the gravitomagnetic time delay. Here, for
simplicity, we neglect any geometrical time delay. Now, as the speed of light
equal to ¢ in a local inertial frame: 744 dx® dx? = 0, we have, in a general
coordinate system, ds? = 8ap dx* dx? = 0. From this well-known condition of
null arc length along the world line of photons, we then have

good? = —g33dz? (3.15)
or d
Ly [E0 (3.16)
dr 833
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Figure 3.2. The observer, source and deflecting body have the same x and y coordinates:
the source is at z = —z (z1 > 0), the observer at z = zp (zp > 0) and the deflecting
body at the origin of the coordinate system. b is the impact parameter and « is the angular
position of a light ray on the lens plane. The source is very far from the deflecting body, so
that we assume all the light rays from the source parallel to the optical axis.

thus, from (3.16), we get, to first order in U,

1420 | -
dr = = dz = (14 20)dz. (3.17)
1-20

Integrating this expression from z = —z; to z = z corresponding,
respectively, to the position of the source and observer, if 7 = z; =~ z is much
larger than the impact parameter b, we finally get

(3.18)

Z 2MR2J5cos?2 )
At12=22+4M1n(2§>+ 2COsb§ot+y)sm,3 .

In this expression the first term is the time taken for a radio pulse to travel
from the source to Earth in the absence of a central mass: M = 0. The second
term is the Shapiro time delay and the third one is the additional delay due to the
quadrupole moment, J, of the deflecting body.
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Similarly, in regard to the time delay due to the angular moment J of the
deflecting body, from the condition ds> = 0 and from x = constant, y = constant,
solving (3.12) with respect to d¢, we have

goz, \/goZ dz? — 00g:. dz?
80 g()()

dr = —

(3.19)

where go, = (4J/r¥)(xcosysinf —y sinfsiny). In the weak-field slow-
motion approximation at the lowest order in U and go, expression (3.19), becomes

dr ~ go. dz + (1 4+ 2U) dz. (3.20)

The first term in (3.20) is the gravitomagnetic time delay, while the other
terms have already been evaluated in the previous case (3.18): they are just the
time it takes for a photon to travel from the source to the observer and the Shapiro
time delay by a mass. Thus, let us integrate the first term of (3.20) from z = —z;
to z = z2 and assume that 7 = z1 2 zo > b. By setting, as before, y = constant
and x = constant, we get the gravitomagnetic time delay:

24
Aty = lim — (xcosysinf — ysinBsiny)dz
r

b—o0 J_;
_ 4Jcos(a+y)sinp
= 5 .

(3.21)

From (3.18) and (3.21), we see that Arj;, (the time delay due to the
quadrupole moment) is of order ~ 1/b* whereas Aty (the time delay due to
the gravitomagnetic field) is of order ~ 1/b. This shows that there is a value of
the impact parameter b such that At; > At and, if the angular momentum of
the deflecting body is large enough, the ‘spin time delay’ may be a relevant effect.

To derive the deflection of electromagnetic waves due to the spin and
quadrupole moment of the deflecting body, we use the geodesic equation in
the weak-field approximation, we then have the deflection angles due to the
quadrupole moment J> and the deflection angles due to the angular momentum

J [32]:
8){2 _ _4M cosa 4JoM R? sin? ,33cos(3oz +2y)
b o b (3.22)
5;2 _ _4M sina 4Jo,M R* sin“ B sin(3a + 2y)
b b3
5/ — 4J sin B cosQa + y)
x = b2
o (3.23)
5/ — _4] sin B sin(2a + y).
y b2
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The first term in (3.22) is the standard deflection by a spherical object of mass
M, whereas the second term is the additional deflection due to the quadrupole
moment, J;, of the central body.

Let us now study the possibility of determining the angular momentum J
of the central deflecting body from time delay and deflection angle of different
images of the source.

Let us consider three light rays emitted from a very far source, propagating
parallel to the z-axis and with the same impact parameter b and let us assume
that we are able to measure, determine or obtain [43] the following quantities:
total time delay between the three rays, Atj2 and At;3; deflection angles 81, 82,
83; and the equatorial radius R of the deflecting body and distances from source
and lens to the observer. In this way, we are able to determine the angle « for
each light beam and the impact parameter b and we can write a system in which
the only unknown quantities are: angular momentum, J, quadrupole moment, J>,
mass, M and Euler’s angle § and y. Solving this system we can, in principle,
determine the time delay due to the angular moment J and the other unknown
quantities [32].

We have chosen a special case in which x = y = 0 for the source, lens and
observer and all the light rays have the same impact parameter. In this way, as we
have already remarked, we do not need to consider the relative time delays in the
arrival time due to the different geometry of the paths travelled by the photons [43]
and due to the difference in the Shapiro time delays by the central mass: these
delays are, in general, much larger than the spin and quadrupole moment time
delays. Indeed, for other configurations in which the source is not exactly aligned
with the lens and the observer, these effects—the different geometry of the path
travelled and the difference in the standard Shapiro time delay—can be the main
source of relative time delay. In these cases, we would then need to model and
remove these delays between the different images on the basis of the geometry
of the system [32]. In special cases, for example if we were to observe four
images of the source and if the angle o of each deflected ray were to differ by
m—the Einstein Cross has a configuration very similar to this—we could, at least
in principle, eliminate the time delay due to the quadrupole moment (see [32])
and, thus, determine the spin time delay.

3.4.2 Some astrophysical sources and spin time delay

Let us now calculate the time delay due to the spin of some astrophysical sources:
the Sun, the lensing galaxy of the Einstein Cross, Q2237 + 031; and a typical
cluster of galaxies.

The Sun parameters are: Mg = 1.477 km, Rg = 6.96 x 10° km,
Jho = 1.7 x 1077 [1] and ag = Jo/Ms = 0.273 km. Let us consider a co-
rotating photon (%71 > o > —%n) and a counter-rotating one (%71 <a < %n),
both coming from infinity and propagating near the Sun with an impact parameter
b nearly equal to the Sun equatorial radius b = R = 6.96 x 10° km. Let us
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assume, for simplicity, that y = 0 and § = %n: the maximum gravitomagnetic
and quadrupole moment time delays, according to (3.18) and (3.21), are then,

respectively,
8J
Aty = - = 1.54 x 107! (3.24)
JoM R?
A2 =4 2b =335x 10725 (3.25)

The time delay due to the Sun’s spin could then, in principle, be detected
using a laser interferometer around the Sun: this would consist of a source and a
detector on opposite sides of the Sun, both at a distance of about 8 x 10'° km.
The source, a laser, would, at the same time, emit photons toward the Sun
but with slightly different angles so that they would travel on opposite sides of
the Sun (i.e. photons co-rotating and counter-rotating with respect to the Sun’s
spin). Then, by gravitational lensing, they would be focused and observed by the
detector on the opposite side. Thus, according to the previous calculation, there
would be a relative time delay in the arrival time of the photons due to the Sun’s
spin. Of course all the other travel time delays should be modelled and removed
from the observed delays, in particular the time delay due to the dispersion of
electromagnetic waves by the solar plasma.

To derive the time delay due to the lensing galaxy of the Einstein Cross
[44,45], we assume a simple model for rotation and shape of the central object.
Details about this model can be found in [46].

The angular separation between the four images is about 0.9”, corresponding
to a radius of closest approach of about R =~ 650]17751 pc, and the mass inside a
shell with R > 650h-3 pe is ~1.4 x 10'%h5] M, [45]. Let us assume J> =~ 0.1

and J ~ 10% km? h;sz, we then have

8J
Aty = > = 4 min (3.26)
JzMR2
A2 =4 ~ 8h. (3.27)

Thus, at least in principle, one could measure the time delay due to the spin
of the lensing galaxy by removing the large quadrupole moment time delay using
the previously described method [32]: of course one should be able to model all
other delays due to other physical effects accurately enough and remove them
from the observed time delays between the four images.

As a third example, we consider the relative time delay of photons due
to the spin of a typical cluster of galaxies: the precise calculations are shown
elsewhere, nevertheless we give here some results. We consider a cluster of
galaxies of mass Mc = 10'“Mg, radius Rc = 5 Mpc and angular velocity
wc = 10718571, Depending on the geometry of the system and on the path
followed by the photons, we then find relative time delays ranging from a few
minutes to several days [32].
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3.4.3 Spacetime geometry inside a rotating shell

Let us first assume that if a body or shell has a steady rotation, the spacetime is
stationary (a spacetime is called stationary if it admits a time-like Killing vector
field £, then there exists some coordinate system in which &% can be written as
& =(1,0,0,0), from the Killing equation, in this coordinate system, the metric
is thus time independent: gus0 = 0). An external solution of this type is the
stationary Kerr metric, characterized by the mass and angular momentum of the
central body. The well-known Lense—Thirring metric [1,7] is, in Boyer—Lindquist
coordinates, the weak-field slow-motion limit of the Kerr metric. The Brill-
Cohen (1966) solution [4] describes the metric inside a shell with arbitrary mass
and to lowest-order in the angular velocity. It is a lowest order series expansion in
the angular velocity @ of the shell on the Scharzschild background of a spherical
mass shell of arbitrary mass M, valid both inside and outside the shell. The Brill-
Cohen metric is

ds?> = —H(r)de> + J(r)[dr? + r?d6? + r?sin? 6(dp — w(r)dt)?]  (3.28)

where
Hr) =[r—a)/r +a)]? forr > R
Hr)=[(R-a)/(R+a)]> forr <R
Jr)y=1+a/r)? forr > R
J(r)=1+a/R)* forr <R

and where « = 2M, and R, w, and M are, respectively, the radius, angular

velocity and mass of the shell (for further details on this solution, see [6] and
related papers in [48]).

However, in the following, we shall only consider Thirring’s weak-field
slow-motion solution for the metric inside a rotating shell and, for simplicity, we
neglect the stresses of the rotating shell (see [4,48,49] for related discussions and
references). Inside a hollow, static, spherically symmetric distribution of matter,
in vacuum, we have the flat metric n4g [1]. Thus, in the weak-field slow-motion
limit, we assume that the metric inside a slowly rotating massive shell can be
written as g8 = Nup + hag, where hoo = h;; = 0 and the (0i) components of the
Einstein field equation then satisfy in the Lorentz gauge:

Aho; = 167 p0! (3.29)
with solution o
1
hoi (x) = —4 / PEIVX) 43 (3.30)
|x — x|

where p is the shell’s mass density and pv’ is the mass—current density.
We can then apply this result to determine the metric inside a thin shell of
total mass M and radius R, rotating with small angular velocity @, by integrating

Copyright © 2005 IOP Publishing Ltd.



expression (3.30) inside the shell, where v = @ x x. By a rotation of the spatial
axes so that @ = (0,0, w) and by using the mass density of a thin spherical
shell, p(x') = (M /4x RZ)S(R — r’) (we neglect here the stresses of the rotating
shell [4,48,49]), we have

h= —4/ PEN@XX) 124y gy
lx —x'|
M T 2 R.ff/
= - —wx / sin@'dQ// ——dy". (3.31)
T 0 0o |x—Rx|

The integral over dQ2 =sin6dfd¢ if r < R is

A/
/ ST VO .
lx —&'| 3R™

Therefore, for any x inside the shell, we have

4 M
h= (hox, hoy, ho) = — 5;“) X X
4 M 4 M
=|z-—wy,———wx,0). (3.32)
3R 3R

By substituting the components of /g inside the slowly rotating shell in the
geodesic equation, we find that the acceleration of a test particle inside a rotating
shell, due to the spin of the shell [1, 3,48], is

_8M 4 M o,
YT I3RS RYY
S_BM 4 M .
YEIR T RYY :
= — ——w Z

15 R

where the w? terms are due to the other components of hqpg and may be interpreted
as a change in the inertial and gravitational mass-density of the shell due to the
velocity wR. Due to the rotation of the shell, the test particle is affected by
forces formally similar to Coriolis and centrifugal forces. For discussions on
the interpretation of the accelerations inside a rotating shell, we refer readers
to [4,48-50].

Finally, we have that the axes of the local inertial frames, i.e. the gyroscopes,

are dragged by the rotating shell with constant angular velocity QG, according
to [1,3]:

. 1 4M
0~ __vxh=-Zo (3.34)
2 3R
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Figure 3.3. Geometry of light rays, with impact parameters b and —b, propagating inside
a rotating shell of radius R.

3.4.4 Time delay inside a slowly rotating massive shell

In section 3.4.1 we have calculated the time delay and the deflection due to the
spin of a body from the rotation of the mass inside a radius r [32]; however, there
is also a spin time delay and an additional deflection due to the rotation of the
external mass [51].

Inside a thin shell of mass M and radius R’ rotating with slow angular
velocity @ = (0, 0, w), the go; = hg; components of the metric tensor are given
by (3.32). Therefore, inside a rotating shell, it is not possible to synchronize
clocks all around a closed path. Indeed, if we consider a clock co-rotating very
slowly along a circular path with radius r (r < R’), when it comes back to its
starting point it is advanced with respect to a clock kept there at rest (with respect
to distant stars). The difference between the time read by the co-rotating clock
and the clock at rest is given in [74]. Indicating with 7| and 7, the unit vectors
from the centre of a spherical shell to the two points on the shell where a light ray
enters and leaves the sphere, respectively, we have the spin time delay due to the

Copyright © 2005 IOP Publishing Ltd.



rotation of the shell [74]:

AMR),

Aoy = — - (F1 X F2). (3.35)

A general expression for the relative spin time delay due the rotation of an
external mass between two photons travelling inside the mass with (a) different
impact parameters, b1 and b, and (b) for any finite thickness of the external shell
is given in [74]

3.4.5 Some astrophysical sources and the spin time delay due to an
external rotating shell

Let us finally report the order of magnitude of the time delay corresponding to
some astrophysical configurations.

For a lensing galaxy with a lens similar to that in the ‘Einstein Cross’ [52,53],
the relative time delay of two photons travelling at a distance of b1 >~ 650 pc and
by >~ —650 pc from the centre due to the rotation of the external mass is then [74]
At >~ 30 min.

As a further astrophysical example, we consider two light rays deflected by
a lensing galaxy which is inside a rotating cluster or supercluster of galaxies.
We then calculate the amount of time delay due to the spin of the mass rotating
around the deflecting galaxy. To get an order of magnitude of the time delay, we
use typical supercluster parameters [54]. By considering a galaxy at the centre of
the cluster and light rays with impact parameters b; =~ 15 kpc and by >~ —15 kpc
(of the order of the Milky Way radius), the time delay, by assuming for simplicity
a constant mass density, is [74]: At ~ 1 day.

Finally, in [74] we show that if, in general, the lensing galaxy is not at the
centre of the cluster, the relative spin time delay between two photons, deflected
by the galaxy, that are propagating inside a rotating cluster or supercluster of
galaxies may, under special conditions, be as large as several years.

3.4.6 Discussion and conclusion on spin time delay

We have derived and studied the ‘spin time delay’ due to the angular momentum
of a body experienced by the photons of two or more images of a source observed
at a far point by gravitational lensing: this effect is due to the propagation of
the photons in opposite directions with respect to the direction of the spin of the
rotating body. We have analysed both the spin time delay caused by a central
rotating mass and in the case of photons propagating inside a massive rotating
shell with a time delay due to the rotation of the external mass.

We have also derived, in weak-field slow-motion approximation, the
deflection in the path of the images due to the spin of the deflecting body. We
have then compared the relative time delay of the photons due to spin with the
relative time delay due to the quadrupole moment of the central body.
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Finally, in order to estimate the relevance of the spin time delay in some
real astrophysical configurations, we have considered some possible astrophysical
cases; nevertheless, these estimates are preliminary because we need to use
more accurate values for the angular momentum and the other parameters of the
considered astrophysical configurations.

We can then summarize the following conclusions of our analyses:

(a) The spin time delay must be taken into account in the modelling of
relative time delays between images observed by gravitational lensing, i.e.
in addition to other time delays such as the geometrical time delay and the
delay due to the quadrupole moment of the lensing body.

(b) If other smaller time delays could be modelled accurately enough and
removed from the observations, we have shown that the large relative delay
due to the quadrupole moment of the lensing body could be removed
for some configurations of the images by using special combinations of
observables. With this method, we could measure the spin time delay due to
the rotation of a mass.

(c) The measurement of the spin time delay might, in principle, be a new
observable for the determination of the total mass of a rotating body, i.e. of
the dark matter content of such objects as galaxies, cluster and superclusters
of galaxies [74].

(d) Depending on the geometry of the system, the relative spin time delay can
be a quite large effect and may then be detected on Earth, in particular in
systems with small angular separation and small relative time delay between
the images such as B0218 4 357 [74].

3.5 Measurement of gravitomagnetism with laser-ranged
satellites

In section 3.5.1 we describe a proposed measurement of the gravitomagnetism of
the Earth and the Lense-Thirring effect, with a relative accuracy of the order
of 1%, using the satellite LARES. LARES would also perform other basic
general relativistic tests. In sections (3.5.2) and (3.5.3) we report the 1995-
2004 measurements of the Lense—Thirring effect obtained by analysing the orbits
of the laser-ranged satellites LAGEOS and LAGEOS 11, confirming the general
relativistic prediction of frame-dragging with an accuracy of about 20% and about
5% in the most recent (March 2004) analysis.

3.5.1 LARES (LAser RElativity Satellite)
The main scientific objectives of the LARES mission [23] are:

(1) To perform high-precision tests of Einstein’s theory of general relativity and,
in particular, the following ones:
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(a) the accurate measurement of the Lense-Thirring effect due to the
Earth’s angular momentum and a high precision test of the Earth’s
gravitomagnetic field, with a relative accuracy of the order of 1%;

(b) a possible test, using the LARES perigee, of some recently proposed
theories [76], based on a brane-world model, which can explain the
dark-energy problem [77];

(c) improved high-precision bounds on the hypothetical very weak long-
range gravitational forces, tests of the inverse square law for very
weak-field gravity and an improved test of the equivalence principle
corresponding to ranges of the order of few thousands km;

(d) a 10~° measurement (improved by about two orders of magnitude)
of the PPN (Parametrized-Post-Newtonian) parameter o testing the
existence of preferred frames in some alternative metric theories of
gravitation;

(e) a 1073 measurement of the general relativistic perigee precession
of LARES and a high-precision measurement of the corresponding
combination of the PPN parameters 8 and y in the field of Earth. The
PPN parameters § and y test Einstein’s theory of gravitation against
other metric theories of gravitation; and

(f) other tests of general relativity and gravitation, such as improvements in
the current limits on hypothetical spatial anisotropies of the gravitational
interaction; and

(2) measurements and improved determinations in geodesy and geodynamics,
in areas such as global plate tectonics, crustal deformation and variations in
the Earth’s rotation [22,23].

The LARES experiment is an improved version of the LAGEOS III
experiment [21]. The main differences between LARES and LAGEOS Il lie in its
weight and orbital eccentricity. The new LARES satellite has been designed to be
about four times lighter than LAGEOS, with a total weight of about 100 kg, and to
be smaller than LAGEOS, with a radius of about 16 cm. The orbital eccentricity
of LARES has been proposed to be 0.04 £ 0.01, whereas the proposed orbit of
LAGEOS III had an essentially zero eccentricity [23].

In [21,22] and [23], it is shown how, by combining the measured nodal
precessions of LAGEOS, QLAGEOS, and LARES, QLARES, we can get a very
accurate measurement of the Lense—Thirring effect, QLense-Thiming  The present
2004 error budget of the LARES experiment is dramatically reduced with respect
to the previous estimates: present analyses show a fotal statistical error in the
LARES experiment of about 1% 2" ™ming o1 Josg over a 3 yr period. The
main improvements for this substantial reduction in the total statistical error are
described in [23,55].

In addition to the high-precision measurement of the Lense—Thirring effect
due to the Earth’s angular momentum, the LARES experiment will provide other
important general relativistic and gravitational measurements, described earlier.
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In phase A of the LARES study, it is also shown how, by measuring the
LARES perigee rate, we could improve our present tests of the equivalence
principle by about two orders of magnitude [23]. These tests will be realized by
the use of the pericentre of LARES [56]. Indeed, a very effective way of detecting
a very weak Yukawa-like gravitational interaction is via a precise measurement
of the pericentre precession. However, the precision of such measurement is
inversely proportional to the orbital eccentricity, therefore the orbit of a new
LAGEOQOS-type satellite with larger orbital eccentricity would be more effective
in detecting a new, hypothetical, very weak gravitational force with a range of the
order of two Earth radii. This would improve the present limits on such interaction
by at least four orders of magnitude [57].

3.5.2 The previous 1995-2001 measurements of the Lense-Thirring effect
using the node of LAGEOS and the node and perigee of LAGEOS 1I

3.5.2.1 Method

In section 3.3 we have seen that the whole orbital plane is dragged by the spin of
the central object: this is the Lense—Thirring effect (3.5).

Let us now describe the 1995-2001 measurements of the gravitomagnetism
of Earth and Lense—Thirring effect using laser-ranged satellites.

Our detection and measurement of the Lense—Thirring effect was obtained
by using satellite laser-ranging data from LAGEOS (LAser GEOdynamics
Satellite, NASA) and LAGEOS II (NASA and ASI, the Italian Space Agency)
and the Earth gravitational field models, JGM-3 and EGM-96.

The measurement of distances has always been a fundamental issue in
astronomy, engineering and science in general. So far, laser-ranging has been
the most accurate technique for measuring the distances to the moon and artificial
satellites [58, 59]. Short laser pulses are emitted from lasers on Earth, aimed
at the target through a telescope and then reflected back by optical cube-corner
retroreflectors on the moon or an artificial satellite [60], such as LAGEOS. By
measuring the total round-trip travel time, one can determine the distance to a
retroreflector on the moon with an accuracy of about 2 cm and to the LAGEOS
satellites with an accuracy of a few millimetres.

The LAGEOS satellites are made of heavy brass and aluminum and are about
406 kg in weight. They are completely passive and covered with retroreflectors
and orbit at an altitude of about 6000 km above the surface of the Earth. LAGEOS,
launched in 1976 by NASA, and LAGEOS II, launched by NASA and ASI in
1992, have an essentially identical structure but they have different orbits. The
semimajor axis of LAGEOS is a = 12270 km, the period P = 3.758 h, the
eccentricity e = 0.004, and the inclination / = 109.9°. The semimajor axis of
LAGEOS Il is a1 = 12 163 km, the eccentricity ey = 0.014, and the inclination
I = 52.65°.
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We analysed the laser-ranging data using the principles described in [61]
and adopted the IERS conventions [62] in our modelling, except that, in the 1998
analysis, we used the static and tidal EGM-96 model [63]. Error analysis of the
LAGEOS orbits indicated that the EGM-96 errors can only contribute periodic
root-sum-square (rss) errors of 2—4 mm radially and, in all three directions, they
do not exceed 10—17 mm. The initial positions and velocities of the LAGEOS
satellites were adjusted for each 15-day batch of data, along with small variations
in their reflectivities. The solar radiation pressure, Earth albedo and anisotropic
thermal effects were also modelled [64—67]. In modelling the thermal effects,
the orientation of the satellite spin axis was obtained from [68]. Lunar, solar and
planetary perturbations were also included in the equations of motion, formulated
according to Einstein’s theory of general relativity with the exception of the
Lense-Thirring effect which was purposely set to zero. All of the tracking-station
coordinates were adjusted (accounting for tectonic motions) except for those
defining the terrestrial reference frame. Adjustments were made for polar motion,
and the Earth’s rotation was modelled from the very long baseline interferometry-
based series SPACE96 [69]. We analysed the orbits of the LAGEOS satellites
using the orbital analysis and data reduction software GEODYN II [70].

The node and perigee of LAGEOS and LAGEOS 1II are dragged by the
Earth’s angular momentum. From the Lense-Thirring formula [21, 24], we get
Q?ensethmng = 31 mas yr~! and Q;;nsethmng = 31.5. The argument of
the pericentre (perigee in our analysis), w, also has a Lense—Thirring drag [1];
thus, for LAGEOS we get &, ™ "™ = 32 mas yr~! and, for LAGEOS 1I,
a')?fnse_Th'm“g =~ —57 mas yr~! [24]. The nodal precessions of LAGEOS and
LAGEOS 1I can be determined with an accuracy of the order of 1 mas yr—'.
Over our total observational period of about 4 yr, we obtained a RMS of the node
residuals of about 4 mas for LAGEOS and about 7 mas for LAGEOS 1I [27]. For
the perigee, the observable quantity is the product eaw, where e is the orbital
eccentricity of the satellite. Thus, the perigee precession w for LAGEOS is
difficult to measure because its orbital eccentricity, e, is ~ 4 x 1073, The orbit of
LAGEOS II is more eccentric, with e ~ 0.014, and the Lense—Thirring drag of the
perigee of LAGEOS Il is almost twice as large in magnitude as that of LAGEOS.
Over about 4 yr, we obtained a rms value for the residuals of the LAGEOS 11
perigee of about 25 mas [27], whereas the total Lense—Thirring effect on the
perigee over 4 yr is = —228 mas.

To quantify and measure the gravitomagnetic effects precisely, we have
introduced the parameter w that is, by definition, one in general relativity [1]
and zero in Newtonian theory.

The main error in this measurement arises from the uncertainties in the
Earth’s even zonal harmonics and their time variations. The unmodelled orbital
effects due to lower-order harmonics are comparable to or larger than the Lense—
Thirring effect. However, by analysing both the JGM-3 and EGM-96 models
with their uncertainties in the even zonal harmonic coefficients and by calculating
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the secular effects of these uncertainties on the orbital elements of LAGEOS and
LAGEOS I, we find [24] that the main sources of error in the determination of
the Lense—Thirring effect are concentrated in the first two even zonal harmonics,
Jo and J4. We can, however, use the three observable quantities QI, QH and oy to
determine w [24], thereby avoiding the two largest sources of error—those arising
from the uncertainties in J> and J4. We do this by solving the system of the three
equations for 8Q1, 8QH and Swyy in the three unknowns w, J and J4, obtaining

~ Exp ~ Exp . Exp
882 AGEOs 1 T C1882 AGEOSs 11 T €200 AGEOS 1T
= u(31 4+ 31.5¢; — 57¢,) mas yr’1 + other errors = 1£(60.2 mas yr’l)
(3.36)

where ¢; = 0.295 and ¢; = —0.35. Equation (3.36) for i does not depend on J;
and J4 nor on their uncertainties; thus, the value of y that we obtain is unaffected
by the largest errors, which are due to §J> and &J4, and is sensitive only to the
smaller errors due to § J,,, with 2n > 6.

Similarly, regarding tidal, secular and seasonal changes in the geopotential
coefficients, the main effects on the nodes and perigee of LAGEOS and LAGEOS
II, caused by tidal and other time variations in the Earth’s gravitational field
[22,26], are due to changes in J> and J4. However, the tidal errors in J> and J4 and
the errors resulting from other unmodelled medium- and long-period variations in
Jo and J4, including their secular and seasonal variations, are eliminated by our
combination of the residuals of the nodes and perigee. In particular, most of the
errors resulting from the 18.6- and 9.3-yr tides, associated with the lunar node,
are eliminated in our measurement. An extensive discussion of the various error
sources that can affect our result is given in [26], only a brief discussion of the
error sources is given in the next section.

3.5.2.2 Results

In this section we report the 1995-2001 results of our measurements.

In figure 3.4, we show the linear combination of the residuals of the
nodes of LAGEOS and LAGEOS 1II and perigee of LAGEOS 1II according to
equation (3.36) to eliminate the §J, and §J4 errors, using the Earth gravitational
model JGM-3 over a 3.1-yr period and after removing ten small periodic residual
signals and the small observed inclination residuals [26].

In figure 3.5, we display an improved analysis [27] (obtained with a linear
combination of the residuals of the nodes of LAGEOS and LAGEOS II and
perigee of LAGEOS II according to equation (3.36)) using the more recent static
and tidal Earth gravitational model EGM-96. We have also refined the non-
gravitational perturbations model: the total period of observations was 4 yr, longer
by about 1 year than the observational period corresponding to figure 3.4. We
have only removed four small periodic residual signals and the small observed
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Figure 3.4. Combination of the residuals of the nodes of LAGEOS and LAGEOS II and
perigee of LAGEOS II according to equation (3.36), using the Earth gravitational model
JGM-3, over a 3.1 yr period. The best-fit line through these combined residuals has a slope
of about Upfeasured = 1.1.

inclination residuals. The removal of the periodic terms was achieved by a least-
squares fit of the residuals using a secular trend and four periodic signals with
periods of 1044-, 820-, 569- and 365.25-day, corresponding, respectively, to the
nodal period of LAGEOS, the perigee and nodal periods of LAGEOS 11, and 1 yr.
The 820-day period is the period of the main odd zonal harmonics perturbations
of the LAGEOS II perigee; the 1044- and 569-day periods are the periods of the
main tidal orbital perturbations, with / = 2 and m = 1, which were not eliminated
using equation (3.36). Some combinations of these frequencies correspond to the
main non-gravitational perturbations of the LAGEOS II perigee. We note that this
analysis, using EGM-96 and its accurate tidal model, is substantially independent
of the removed signals, whereas the previous analysis [26], corresponding to
figure 3.4, was in part sensitive to the periodic terms included in the fit. In other
words, our value (figure 3.5) for the secular trend is not significantly changed by
fitting additional periodic perturbations, and indeed, even the fit of the residuals
with only a secular trend, with no periodic terms increases the slope by less than
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Figure 3.5. Combination of the residuals of the nodes of LAGEOS and LAGEOS II and
perigee of LAGEOS II according to equation (3.36), using the Earth gravitational model
EGM-96 over a 4-yr period. The best-fit line through these combined residuals has a slope
of about (nfeasured = 1.1.

10%. Nevertheless, in this case, the rms of the post-fit residuals increases by
about four times with respect to figure 3.5.

Figure 3.6 shows the fit of the residuals obtained as in figure 3.5 but with
only three periodic signals with 1044-, 820-, and 569-day periods removed.

In figures 3.4-3.6, our best-fit straight lines, through the combined residuals
of nodes and perigee have, respectively, the following slopes: s Measured =~
1.1, uoMeasured >~ 1 1 4 0,03, and p3Measured =~ 1 1 4+ 0.03, where 0.03 is the
standard deviation of the fits corresponding to figures 3.5 and 3.6 using the EGM-
96 gravitational model. This combined measured gravitomagnetic perturbation of
the satellites’ orbits corresponds in a 4-yr period to about 16 m at the LAGEOS
altitude, i.e about 265 mas.

The rms of the post-fit combined residuals corresponding to figure 3.5 and
3.6 is about 9 mas. Our total systematic error is estimated to be of the order of
30-50% of ugr corresponding to figure 3.4, and of the order of 20-30% of ngr
corresponding to figures 3.5 and 3.6.
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Figure 3.6. Fit of the residuals as in figure 3.5 but with removal of only three periodic
signals with 1044-, 820-, and 569-day periods. The best-fit line through these combined
residuals has a slope of about (peasured = 1.1-

Using the JGM-3 covariance matrix, we found the errors due to the
uncertainties in the even zonal harmonics Jp,, with 2n > 6, to be
sueven zonals:Jn=Js < 17% of ugg and, using the EGM-96 covariance matrix,
gueven zonals:Jn=Js < 139 of ygr. The errors in the modelling of the perigee
rate of LAGEOS 1II due to the uncertainties in the odd zonal harmonics J;,41
with EGM-96 are 81044 20nals < 29, of yigr. Using the EGM-96 tidal model,
we estimated the effect of tidal perturbations and other variations in the Earth’s
gravitational field to be §ytidestothervariations < 405 of ;. On the basis
of analyses [26,71] of the non-gravitational perturbations—in particular, those
on the perigee of LAGEOS II—we found §nom-gravitational <13 _20% of ygp,
including uncertainties in the modelling of the satellites’ reflectivities. The error
due to uncertainties in the orbital inclinations of LAGEOS and LAGEOS II was
estimated to be §yinelination < 50, of ;;Gp.

Taking into account all these error sources, we arrived at a total rss error
<20-30% of pgr. Therefore, over an observational period of 4 yr and using
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EGM-96, we determined uMeasured = 1.1 £ 0.3, where 0.3 is the estimated total
uncertainty due to all error sources.

Based on the 1995-2001 analyses of the orbits of the laser-ranged satellites
LAGEOS and LAGEOS II, we conclude that the gravitomagnetic or Lense—
Thirring effect exists and its value agrees with the prediction of Einstein’s theory
of general relativity.

Testing our method to measure the Lense—Thirring effect and its error budget

A basic concern in our analyses was to estimate the total error in our measurement
of the Lense-Thirring effect. In order to support our measurement and the
corresponding error analysis, we have performed (a) a test and (b) a preliminary
blind-test simulation, explained in the following paragraphs. Finally, we describe
our latest, 2001, measurement of the Lense—Thirring effect over 7.3 years of data
of LAGEOS and LAGEOS 1II, obtained by modelling only the radiation pressure
coefficient of LAGEOS II (see figure 3.8).

This 2001 measurement fully confirms and improves our previous results:
the Lense—Thirring effect exists and its experimental value, u = 1 £ 0.3 (£0.3
is the estimated total systematic error), fully agrees with the general relativity
prediction. It is important to note that (1) in the analysis corresponding to
figure 3.8 we only modelled the radiation pressure coefficient of the satellite on
LAGEOS 11, i.e. the reflectivity coefficient, Cr, and no other parameters such
as the accelerations along the track of the satellite as in our previous analyses
corresponding to figures 3.4-3.7 (the Cr of LAGEOS II shows an apparent decay,
in agreement with previous measurements [72]); (2) the rms of the residuals
corresponding to figure 3.8 is about 10 mas, whereas the total measured signal
is about 440 mas; and, finally, (3) the quality of the fit and corresponding
measurement can be improved by further reducing the rms of the 15-day fits
(corresponding to each point in figure 3.8) with further processing of the data
using GEODYN/SOLVE, thus further reducing the rms of the final fit in figure 3.8.

(a) Testing our solution for w using the node, perigee, mean anomaly,
eccentricity and semimajor axis of LAGEOS II and node of LAGEOS. To test
our measurement of the Lense—Thirring effect with the residuals of the node and
perigee of LAGEOS II and the node of LAGEOS, we have also analysed the
residuals of the eccentricity, mean anomaly and semimajor axis of LAGEOS II.
Thus, we have produced a solution for u by using all these orbital elements.
Indeed, using the residuals of these orbital elements, we have a system of
equations (for §21, 6211, dwrr, der, My, and dagy) in the unknowns: the Lense—
Thirring effect, §J, and §J4 errors, and a constant and a variable, once-per-
revolution, along-track acceleration. Therefore, the solution of this system for
w and the corresponding fit (shown in figure 3.7) are completely independent of
the adjusted accelerations and errors § J> and § J4. The result of our solution with
the residuals of these orbital elements and the corresponding fit for © is shown
in figure 3.7: the measured value of the Lense—Thirring effect is peasured = 1.
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Figure 3.7. Solution of p by using all the orbital elements of LAGEOS II. The best-fit line
shown through these combined residuals has a slope of about wpeasured = 1-

Thus, this further analysis and the corresponding fit test and confirm our previous
result [27].

(b) Preliminary blind-test-simulation. Following a suggestion by the group
at CSR at the University of Texas, Austin [72], we have performed a preliminary
simulation and blind-test analysis. Using GEODYN, we simulated about two and
a half years of data from the LAGEOS satellites with a model of perturbations
in which the a priori value of the Lense-Thirring effect was twice its general
relativistic value. Then, we performed our standard analysis, previously explained
in this section, using the same model for the perturbations but without the Lense—
Thirring effect. By our combination (3.36) of the node and perigee of LAGEOS
II and the node of LAGEOS, obtained with an analysis of the simulated data
of the orbits of these two satellites, we found a value for p about 1.9 times the
Lense-Thirring effect, i.e. about 95% of the value a priori set up in our simulation
of their orbits and the corresponding laser-ranging data. In this analysis, we
modelled the radiation pressure coefficients and along-track accelerations: the
result is given in [73]. We observe that this test was just a preliminary blind-test-
simulation; indeed the simulated orbits and the corresponding laser-ranging data
have to be simulated by using a perturbation model which includes variations in
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2001-Measurement of the Lense-Thirring Effect.
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Figure 3.8. Latest 2001 measurement of the Lense—Thirring effect using LAGEOS and
LAGEOS II, obtained by modelling only the radiation pressure coefficient of LAGEOS 11,
over nearly 8 yr of data. The best-fit line through these combined residuals has a slope of
about Upeasured = 1 & 0.02. The total estimated systematic error is about £0.3.

all the relevant parameters (such as J> and Js) within the known uncertainties.
Nevertheless, this preliminary simulation was important in that it showed the
consistency of our method and of the preliminary error budget.

(c) Finally, in figure 3.8 we display our latest 2001 measurement of
the Lense—Thirring effect using LAGEOS and LAGEOS II, obtained by just
modelling the radiation pressure coefficient of LAGEOS II, over nearly 8 yr of
data, i.e. over an observational time nearly double that of our previous analyses
[73].

This recent measurement improves our previous results and fully confirms
the general relativistic prediction of frame-dragging. In the analysis
corresponding to figure 3.8, we have only modelled the radiation pressure
coefficient on LAGEOS II and no other parameters such as the along-track
accelerations. The rms of the residuals corresponding to figure 3.8 is about 10 mas
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whereas the total measured signal is about 440 mas; nevertheless the quality of
the fit and corresponding measurement can be improved by further reducing the
rms of the 15-day fits.

3.5.3 The recent 2004 measurements of the Lense-Thirring effect using
only the nodes of the LAGEOS satellites

3.5.3.1 Method

The accurate measurements of the Lense—Thirring effect described in this section
have been obtained over a period of observation of about 10 yr by using the
laser-ranging data of the satellites LAGEOS and LAGEOS II and the recently
released Earth gravitational field models EIGEN-2S and GGMOIS generated by
the dedicated satellites CHAMP and GRACE [78-83].

The models used in this orbital analysis are described in table 3.1.

In section 3.3 we have seen how the node and perigee of a test particle are
dragged by the angular momentum of a central body. However, whereas in our
previous determination of the Lense—Thirring effect, described in section 5.2, we
used both the nodes of LAGEOS and LAGEOS II and the perigee of LAGEOS 11,
in the present analyses we have only used the nodes of LAGEOS and LAGEOS
1I. Indeed, the perigee of an Earth satellite such as LAGEOS 1I is affected by
a number of perturbations whose impact in the final error budget is not easy to
assess and this was one of the two main concerns of Ries et al [84] (the other
concern [84] was that, in the EGM-96 model, some favorable correlation of the
errors of the Earth’s spherical harmonics might lead to some underestimated
error budget). However, this concern is absent in the present analyses. Indeed,
using the previous models (JGM-3 and EGM-96), we needed three observables
and thus we also needed to use the perigee of LAGEOS II. However, with the
recently released solutions EIGEN-2S and GGMO1S [78-83], thanks to the more
accurate determination of the Earth’s gravity field, it is sufficient to eliminate the
uncertainty in the quadrupole moment and thus to use just two observables, i.e.
the two nodes of the LAGEOS satellites. In addition, we have also determined
the Lense—Thirring effect with EGM-96 and the use of the perigee of LAGEOS 11,
over about 10 years of data [73]. There was a remarkable agreement using these
different techniques and the different Earth gravity models.

The nodal precessions of LAGEOS and LAGEOS II can be determined with
an accuracy of the order of 1 mas yr—! or less. Over our total observational period
of about 10 yr, we obtained a rms of the post—fit residuals of the nodes combined
with formula (3.37), of about 11 mas both with EIGEN-2S and with GGMO1S.

The main error in this measurement is due to the uncertainties in the Earth’s
even zonal harmonics and their time variations. The un-modelled orbital effects
due to the lower-order harmonics are in order of magnitude comparable to the
Lense-Thirring effect (see [73]). However, by analysing the EIGEN-2S and
GGMO1S models and their uncertainties in the even zonal harmonics and by
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Table 3.1. Models used in the orbital analysis.

Geopotential (static part) EIGEN-2S and GGMO1S
Geopotential (tides) Ray GOT99.2

Lunisolar and planetary perturbations JPL ephemerides DE-403

General relativistic corrections PPN except L-T

Lense—Thirring effect Set to zero

Direct solar radiation pressure Cannonball model

Albedo radiation pressure Knocke—-Rubincam model
Yarkovsky—Rubincam effect GEODYN model

Spin axis evolution of LAGEOS satellites  Farinella—Vokhroulicky—Barlier model
Station positions (ITRF) ITRF2000

Ocean loading Scherneck model with GOT99.2 tides
Polar motion Estimated

Earth rotation VLBI + GPS

calculating the secular effects of these uncertainties on the orbital elements
of LAGEOS and LAGEOS II, we find that the main source of error in the
determination of the Lense—Thirring effect is just due to the first even zonal
harmonic, (J>) (see later).

We can, however, use the two observable quantities Qp and Qy to determine
w [21, 22, 24], thereby avoiding the largest source of error arising from the
uncertainty in J,. We do this by solving the system of the two equations for
82 and 82y in the two unknowns w and J;, obtaining for w:

=~ Exp - Exp
882 AGEos 1 T 2L AGEOS 11

= u(31 + ¢31.5) mas yr~! + other errors = (482 mas yr~!) (3.37)

where ¢ = 0.545. Equation (3.37) for u does not depend on J> nor on its
uncertainty; thus, the value of u that we obtain is unaffected by the largest error,
due to §J>, and is sensitive only to the smaller uncertainties due to §.J>,, with
2n > 4.

Similarly, regarding tidal, secular and seasonal changes in the geopotential
coefficients, the main effects on the nodes of LAGEOS and LAGEOS II caused
by tidal and other time variations in Earth’s gravitational field [22,23] are due
to changes in Ja; e.g. by the uncertainty in the 18.6 yr lunar tide, with the
period of the Moon node, the change in J> due to the post-glacial rebound and
by the anomalous variation in the quadrupole coefficient (see later). However,
the tidal errors in J, and the errors resulting from other un-modelled medium-
and long-period variations in J», including its secular and seasonal variations,
are cancelled by our combination of node residuals (3.37). In particular, most
of the errors resulting from the 18.6 and 9.3 yr tides, associated with the lunar
node, are cancelled in our measurement. The various error sources that can affect
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the measurement of the Lense—Thirring effect using the nodes of the LAGEOS
satellites have been extensively treated in a large number of papers by several
authors [21-24,26,64-68, 71]—the main error sources are treated in [73].

3.5.3.2 Results

The orbital perturbations of a satellite may be either secular and periodical.
Among the secular perturbations of the node of the LAGEOS satellites, there
are: the shift of the nodal line due to the even zonal harmonics of the Earth’s
gravitational field [41], the de Sitter effect and frame-dragging. The de Sitter
effect has been measured with an accuracy of about 7 x 1073, its effect is only
19.2 mas on the LAGEOS node and thus its uncertainty is negligible in the Lense—
Thirring measurement. However, the uncertainty in the even zonal harmonics
is a crucial factor in the determination of frame—dragging since an error in one
of the lower even zonal harmonics may be large enough to be indistinguishable
from the Lense—Thirring nodal drag. This type of critical error is treated later.
However, the periodical perturbations of the node of the LAGEOS satellites may
also be a crucial factor in the determination of frame—dragging and, in particular,
the uncertainty in the perturbations with a long-period compared to the period
of observation may be critical. Effects with a period much shorter than the
observational period are averaged out. In the present determination of the Lense—
Thirring effect, we have three basic factors that make the error due to periodical
effects in the measurement of frame—dragging negligible and also make this error
easy to assess in the final error budget. These basic factors are:

(i) The period of the present analyses is about 10 yr and thus all the periodical
perturbations of the nodes are basically averaged out apart from the 18.6 yr
tide associated with the Moon node, however, the main effect of this tide is
a change of the J» coefficient that is cancelled out using our combination of
observables (3.37).

(ii) Since the original proposal of the LAGEOS III experiment [21], numerous
researchers [21-24,26, 64-68, 71] have treated the perturbations affecting
the LAGEOS node in order to determine the Lense—Thirring effect and have
concluded that the only critical perturbations on the nodes of the LAGEOS
satellites are those due to the Earth’s even zonal harmonics. However, as
shown later, they contribute with an error of about 17.8 % (using the EIGEN-
2S model) due to the high accuracy of the recent Earth’s gravity field model
EIGEN-2S (and GGMO1S).

(iii) Inregard to the periodical perturbations, in addition to a detailed treatment of
the various perturbations affecting the LAGEOS node and their uncertainties
given in [73], a simple but very meaningful test shows that the periodic
perturbations cannot introduce an error larger than about 4% in our
determination of the Lense—Thirring effect.
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Figure 3.9. Fit of the residuals of the nodes of LAGEOS and LAGEOS II, using our
combination (3.37) and the Earth model EIGEN-2S, with a secular trend only. The slope
is ;£ = 0.99 and the rms of the post-fit residuals is 17.5 mas.

Indeed, since the periods of the gravitational and non-gravitational orbital
perturbations (but not their amplitude) are very well determined, we have also
fitted for a number of periodic effects together with the secular trend. We have
done a number of different fits, each with different periodical perturbations. We
then compared the result in the case of the fit with a secular trend only with the
various results when, together with a secular trend, we have included a different
number of the main periodic perturbations. The result is that the maximum
deviation of the secular trend from the case of its fit with no periodic perturbations
does not exceed 4% of the Earth’s frame-dragging as is clearly displayed in
figures 3.9-3.12 and the corresponding captions. Of course, the rms of the fit is
much smaller when we include a substantial number of periodic perturbations.
Therefore, the two concerns of Ries et al [84], which do not impinge on the
method or the value of the Lense—Thirring effect that we had obtained in our
previous analyses [26-28] but rather our previous error budgets (claimed by Ries
et al to be optimistic by a factor two or three), cannot be applied to the present
analyses, as explained later and in [73]. Indeed, the first concern regarding the
perturbations of the perigee of LAGEOS Il is clearly absent in the present analyses
since we use here only the nodes of the LAGEOS satellites and we do nort use the
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Figure 3.10. Fit of the residuals of the nodes of LAGEOS and LAGEOS II, using our
combination (3.37) and the Earth model EIGEN-2S, with a secular trend plus ten periodical
terms. The slope is © = 0.97 and the rms of the post-fit residuals is 11 mas.

perigee. Second the concern regarding the high correlation of some of the even
zonal harmonics of the EGM-96 model is also substantially absent in the present
analyses—indeed the Earth models we use here have a low correlation between
the even zonal harmonics (see later and the related discussion in [73]).

In conclusion, in the analysis with EIGEN-2S, we have a total error budget
of about 18% of the Lense—Thirring effect. Even by increasing the error due to
the Earth’s even zonal harmonics by 50%, we have a relative error due to the even
zonals of 26.7% and a total error budget of 26.8% of the Lense—Thirring effect.

The main perturbations in our determination of the Lense—Thirring effect are
described and analysed in [73].

In the present analysis, we have used EIGEN-2S and GGMO1S; however,
these models are preliminary in the sense that they have been obtained over
relatively short periods of observations by CHAMP and GRACE. Thus, the values
of the Earth’s spherical harmonic coefficients may change appreciably with longer
periods of observations. In particular, the uncertainties in the Earth’s zonal
harmonics include only tentatively systematic errors in GGMOI1S and are only
formal errors in EIGEN-2S. However, our analysis is not sensitive to changes
in the Earth’s quadrupole moment—it is just affected by changes in the higher
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Figure 3.11. Fit of the residuals of the nodes of LAGEOS and LAGEOS II, using our
combination (3.37) and the Earth model GGMO1S, with a secular trend only. The slope is
© = 1.26 and the rms of the post-fit residuals is 18 mas.

zonal harmonics. Therefore, future more accurate determinations of the even
zonal coefficients and of their uncertainties might lead to different values of u
and to a different total error budget. Nevertheless, it is crucial to note that when a
more accurate model using GRACE, CHAMP or GOCE becomes available, it will
be straightforward to, assess a posteriori the total error of our present analyses
very accurately. Indeed, one will just need to take the differences between the
values of the even zonals of the EIGEN-2S and GGMO01S models presently used
with the corresponding values of the future more accurate model from GRACE,
CHAMP or GOCE and consider the uncertainties in these future models. Thus,
the total error in the present measurement of p due to the uncertainties in the Jy,
coefficients can be easily re-estimated.

In figures 3.9-3.12, we report our determination of the Lense-Thirring
effect, obtained using the nodal rates of the LAGEOS and LAGEOS 1I satellites
over a period of about 10 yr. Figure 3.9 displays the combination of the nodes
according to formula (3.37), representing the measurement of the Lense—Thirring
effect using the EIGEN-2S model: the slope is 0.99u. Figure 3.10 shows our
measurement of the Lense—Thirring effect using EIGEN-2S by fitting the orbital
residuals with a secular trend contemporarily with ten main periodic effects: the
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Figure 3.12. Fit of the residuals of the nodes of LAGEOS and LAGEOS 1I, using our
combination (3.37) and the Earth model GGMO1S, with a secular trend plus ten periodical
terms. The slope is u = 1.22 and the rms of the post-fit residuals is 11 mas.

slope is 0.97u. Figure 3.11 displays the combination of the nodes according to
formula (3.37), representing the measurement of the Lense—Thirring effect using
GGMO1S: the slope is 1.26. Figure 3.12 shows our measurement of the Lense—
Thirring effect using GGMOL1S by fitting the orbital residuals with a secular trend
contemporarily with 10 periodic effects: the slope is 1.22.

In conclusion, by fitting our combined residuals with only a secular trend,
using EIGEN-2S, we found that

n =0.985=+0.182 (3.38)

where ¢ = 1 in general relativity. By fitting our combined residuals with a secular
trend plus 10 periodic signals and, using EIGEN-2S, we found that

w =0.965 £ 0.182. (3.39)
The rms of the post—fit residuals was 17.5 mas in the case of the fit of secular

trend only and 11 mas in the case of the fit of a secular trend plus 10 periodic
signals.
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By fitting our combined residuals with a secular trend plus ten periodic
signals and using GGMO1S, we found that

n = 1.22+0.239.

The rms of the post-fit residuals was 18 mas in the case of the fit of a
secular trend only and 11 mas in the case of the fit of a secular trend plus
10 periodic signals. However, since the covariance matrix of GGMO1S was
not available, we could not assess the total systematic error using GGMOI1S
accurately. Nevertheless, by simply adding the absolute values of the errors due to
the published uncertainties in each GGMO1S even zonal coefficient, we obtained
a maximum error of 23.6% in w, due to the error in the Earth’s static gravity field,
and a total rss error of 23.9% of u (since, by far the most dominating error source
is due to uncertainties in the static even zonal harmonics).

By fitting our combined residuals with two six or ten periodic terms, we
basically obtained the same value for the Lense—Thirring effect with a maximum
variation of 4% only. Furthermore, the two determinations of the Earth’s
frame-dragging effect obtained with EIGEN-2S and GGMO1S are practically in
agreement with each other within their uncertainties (= 18% for EIGEN-2S and
= 24% for GGMO1S).

Our measured value of the Lense—Thirring effect corresponds to 97% (in
the improved fit with ten frequencies and 99% in the fit with a trend only) of
Einstein’s theory prediction (using EIGEN-2S) and thus, since our experimental
uncertainty is about 18%, it fully agrees with the general relativistic prediction.

We note that the only uncertainty in our present error budget is due to the
published errors in the EIGEN-2S and GGMO1S models that do not include (in
EIGEN-2S) or might just underestimate the systematic errors (in GGMOLS) in
the determination of the even zonal harmonics. However, when more accurate
models of the Earth’s gravity field become available, it will be straightforward to
evaluate the accuracy of the EIGEN-2S and GGMO1S models we have used here
(by substantially taking the difference between the corresponding coefficients).
This will provide, a posteriori, a solid re-assessment of the error in the present
determination of frame-dragging.

In addition, we also analysed the LAGEOS satellites data using the older
model EGM-96 and our previous method of combining the nodes of the LAGEOS
satellites with the perigee of LAGEOS II. However, the present period of analysis
was about 10 yr, i.e. about 2.5 times longer than any previous period of analysis.
This measurement of u with EGM-96 was in full agreement with our previous
determination of frame-dragging [73].

Finally, we note that, in addition to the accurate measurement of the
Lense-Thirring effect, we have observed an anomalous increase of the Earth’s
quadrupole coefficient J> since 1998 in the orbital residuals of LAGEOS and
LAGEOS II. This change we observe in J is in good agreement with the J
variation observed by Cox and Chao [85].
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H,:

In conclusion, the Lense—Thirring effect exists and its experimental value—
0.97 £ 0.18—fully agrees with the prediction of general relativity [73].

Recently, in March 2004, we have obtained an improved measurement in the
Earth’s frame-dragging using the newest model provided by the GRACE satellites,
this recent result fully agrees with general relativity with an error of =5% only

[75].
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Chapter 4

The special relativistic Equivalence
Principle: gravity theory’s foundation

Kenneth Nordtvedt
Northwest Analysis, 118 Sourdough Ridge, Bozeman, MT 59715,
USA

4.1 Introduction

When Einstein formulated his grand hypothesis, the Equivalence Principle (EP)
and then used that principle to make his two classic predictions—that gravity
deflects light and alters clock rates—his arguments rested on only the most
rudimentary feature of his special relativity theory: he essentially employed
Newtonian physics. A light ray (illustrated in figure 4.1 by the finely dotted line)
leaves an upwardly accelerating floor at initial angle +¢ and it again meets the
floor at a later time 7 and at horizontal distance L as determined from the two
Newtonian equations
cT sing = %gT2 and cTcos¢p =L.

On reunion at time 7', the light ray makes a descending angle —¢ with respect to
the floor: the rate per unit time for the deflection of that light ray with respect to
the floor is then (in the small ¢ limit) d¢/dr = g/c, or expressed as deflection
rate per distance travelled, d¢/dx = g/c*. Light-ray pulses are also indicated
in figure 4.1, propagating between a clock C anchored to the accelerating floor
and another clock C’ anchored at height 4 above the floor. The fime transfer

relationship between the times the light leaves the former (¢1) and arrives at the
latter (¢2) is obtained from the Newtonian equation

leti+cta—n)=h+1gt3 4.1)
which, in a first approximation yields a relative rate for these times
dr h
2~ + 82
dt c?
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Figure 4.1. Einstein’s original Equivalence Principle arguments. In the accelerating
left-hand box, (1) the floor reaches bodies A and B, both at rest in inertial space, at the
same time, (2) the floor’s right-hand edge has accelerated upwards to meet the light ray
and (3) light pulses sent out by each tick of clock C (anchored to the floor of the box) are
received at a slower rate by clock C’ (anchored to the ceiling of the box) because of the
latter clock’s upward motion acquired during the light pulses’ times of flight; and the light
pulses can be reflected or transponded back to clock C. If equivalent phenomena are to
occur in the right-hand box which is at rest in gravity, then (1) bodies A and B must fall
at precisely identical rates, (2) light is deflected by gravity, (3) clock C ticks slower than
clock C’ by virtue of its different location in a gravitational potential and (4) the round-trip
ranging time measured by clock C is less than 24 /c.

If round-trip ranging experiments using light had been contemplated by Einstein
a century ago, he could also have predicted the local outcome of such ranging
measurements by adding to equation (4.1) a relationship for the light’s return trip,

h+3%gt; —c(tz — 1) = L¢3 4.2)
which when added to the outbound time gives the round-trip’s total elapsed time
2h  gh?
¢ c

This EP-derived ranging time for local experiments is substantiated in metric
theories of gravity such as general relativity and its scalar—tensor variations. The

Copyright © 2005 IOP Publishing Ltd.



EP predictions of light’s deflection in gravity have been claimed by some to be
no more than earlier predictions of mechanistic deflection of light corpuscles
travelling at the finite speed c¢. This mechanistic viewpoint, however, would
predict a speeding up of light as it approached matter, not the slowing obtained
from the EP [4].

The third phenomenon illustrated in figure 4.1 consists of the generally
different bodies A and B which are at rest and located side by side in inertial space.
The upwardly accelerating floor then meets both of these bodies simultaneously:
indeed it was Einstein’s contemplation of this identity of free fall which led him
to his principle.

Requiring these observational results to occur also in gravity by virtue of the
EP, the interpretations must now be that the local gravitational acceleration g (1)
deflects a transversely propagating light ray, (2) changes clock frequencies f with
altitude 4 and (3) increases the speed of light (as measured by a ground clock) by
the previously derived rates,

do 1df 1dc g

dx  fdh  cdh 2
and (4) different bodies A and B fall in gravity at precisely identical rates. Special
relativity played almost no role in arriving at these conclusions.

But the EP can predict a number of additional novel phenomena. By fully
utilizing special relativity when exploring implications of the EP, converting it
into the Special Relativistic Equivalence Principle (SREP), further effects can be
predicted which include (1) geodetic precession of a body’s inertial orientation as
it free-falls non-vertically in gravity, (2) a relativistic (1/ ¢? order) contribution to
the precession of the major axes of gravitational orbits (such as Mercury’s) and
(3) a gravitomagnetic precession of a body’s inertial orientation by virtue of a
moving source of gravity, as well as a general gravitational interaction between
mutually moving masses and between moving mass and light.

The derivation of these new consequences of equivalence follows the spirit
of the original EP arguments. Novel phenomena are first derived as they occur in
gravity-free, accelerated laboratories. To analyse body and light ray trajectories,
clock rates and behaviour of other experimental devices, we set up a master
inertial frame with its observer and clock at rest and, from that perspective,
the calculations of clock, body and light behaviours can be performed. In this
gravity-free inertial frame, light rays travel along straight lines at a unique speed
¢, free bodies move at constant velocities and arbitrarily moving clocks ‘tick’ at
the special relativistic proper rate

dr = dt /1 — v(1)2/c2 4.3)

expressed in terms of the rate dr of a clock at rest in the master inertial
frame. A ‘ground’ floor of clocks are synchronously given equal and constant
(properly measured by accompanying accelerometers) upward accelerations. To
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keep the interpretations of various measurable phenomena as straightforward
and free of controversy as possible, the experimental observables are confined
to measurements made on this ground floor of accelerating clocks (later, of
course, an equivalent array of clocks is deployed on the actual ground in a local
gravitational field). Special relativity’s Lorentz transformation, used to relate
event coordinates as measured in two inertial frames which move at constant
velocity relative to each other, is needed: in the case of a transformation to a
frame moving at speed v in the y-direction, for example, new coordinates are
related to original ones by

dt’ = y(dr — vdy/c?)
dy’ = y(dy —vdr)
dx’ = dx

dz’ =dz

with
1

r= \/1—v2/c2.

The types of gedanken experiments analysed in this gravity-free situation of a
ground floor of upwardly accelerating clocks are shown in the bottom picture of
figure 4.4. Both bodies and light rays which are given free trajectories on initially
leaving the accelerating ground floor are considered. The bodies may carry
clocks and have extension (orientation). At future times, there will be reunions
of the body (clock) trajectories and light trajectories with that of the upwardly
accelerating ground floor. Various measurable quantities are then recorded at
these reunion events: such measurements include the elapsed proper times of
various clocks, the body orientations, horizontal locations of reunions, etc. The
SREP then requires identical results for the same measurable quantities in gravity,
as shown in the top picture of figure 4.4. In order to achieve this identity of results,
unique gravity-induced modifications to the speed of light function, to the body
equation of motion and to the clock rate function are determined and rotations of
an inertial rod with respect to the ground during free fall motion are required.

Consider a rod which travels at constant velocity and without rotation
through gravity-free inertial space. (‘Non-rotation’ of the rod can be established,
for instance, by attached accelerometers which record no centrifugal forces.)
As shown in figure 4.2, the trajectory of this rod is twice crossed by that of
an upwardly accelerating ground floor of the non-inertial laboratory. In the
instantaneous rest frames of those two crossing events, the orientations of the rod
with respect to the ground are determined and found to differ. When the SREP
is then invoked and a rod free-falling in gravity (and free of absolute rotation) is
considered, this same change in orientation will be required but that rotation must
now be interpreted as a precession of the rod’s inertial orientation by virtue of its
motion through the local gravity—geodetic precession or, by virtue of the motion
of the source of gravity, gravitomagnetic precession.
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Figure 4.2. Gravitomagnetic precession from the Equivalence Principle. The top scene
shows an upwardly accelerating floor and a non-rotating rod moving freely through
gravity-free space. Floor and rod meet twice and an observer moves at constant proper
velocity along the floor to be present at both events. The middle scene shows the meetings
in the two instantaneous rest frames of the observer. The relativity of simultaneity in the
Lorentz transformation for time results in different rotations of the rod in the two events.
The EP calls for the same observable outcomes in gravity: this predicts the gravitomagnetic
rotation relative to the ground of an inertially non-rotating rod due to a moving source of
the gravity. The bottom scene also shows that the rod’s gravitational free-fall trajectory
is not vertical as viewed from the observer. This specifies the local gravitomagnetic
contribution to the gravitational equation of motion.

4.2 Gravitomagnetic precession due to moving gravity source

As viewed from a master inertial frame (top panel of figure 4.2), at time t = 0 a
horizontal rod leaves a floor with horizontal velocity component v, and vertical
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Figure 4.3. Geodetic precession from the Equivalence Principle. The top scenes shown
from perspective of a master inertial frame show an intrinsically non-rotating rod both
when it leaves and when it again meets an upwardly accelerating floor. After Lorentz
transformations to the instantaneous rest frames of the observer (fixed on the floor)
indicated by symbols (), the orientations of the rod relative to the floor are shown by
the dotted rod. The key time Lorentz transformation responsible for the rod reorientation is
shown in the upper left-hand corner of the figure. Assuming the SREP, the figure’s bottom
scene shows the same rotation of the rod in gravity but which now must be interpreted as
geodetic rotation of the inertial frame which moves through gravity with the rod.

velocity vy [3]. An observer travels along the floor at constant horizontal proper
speed w selected so as to arrive at the future reuniting event of rod and floor.
The floor accelerates upward as y = gr?/2. In the ' = 0 rest frame of this
observer, the time Lorentz transformation indicates different times as measured in
the master inertial frame for the two ends of the rod

1
Ny

with the right-hand side of the rod having the later time ¢ value. With the rod
initially moving up from the floor, the middle panel of figure 4.2 indicates the
rod’s initial orientation as seen in the observer’s rest frame. The difference

t=y{' +V-r'/c? with y = (4.4)
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t=T=2v,/g (1 7115/02)71

x = Lsinh~Y(gt/c)/sinh ™ (gT/c) z=1L

y=(/9) (VI+t/oP -1)

_=—-4TC

y=ctsing ——
_ —~z=ctcosd

Figure 4.4. Clock/rod and light ray leave and rejoin the ground: two views. The bottom
view of events is as seen by a master inertial observer at rest in gravity-free space. At time
t = 0, a light ray (broken line) is launched at angle ¢ and a non-accelerating, non-rotating
rod with clock is launched at angle tan~! (vy/vy) (full line), and then ray and rod meet an
upwardly accelerating ‘ground’ clock at the latter’s times tc and 7, respectively. Another
‘ground’ clock moves at constant proper speed w to the right to also meet the rod/clock
at the reunion event. The non-accelerating (free falling) clock records the time g for its
reunion event, and the right-moving ‘ground’ clock records the time g = to+/1 — w2/c2.
The trajectories of the three clocks and the light ray as recorded in the master inertial frame
are indicated. The top view shows the same physical events occuring in gravity. The SREP
requires all observables, such as the clock readings at the reunions etc, to have identical
values in the two situations.

between rod orientation angles seen in the two frames is readily evaluated to be
UxVy /c? in leading relativistic order.

The upwardly accelerating floor meets the rod again at time 7 = 2v,/g
by which time the floor is travelling upward at speed of about 2vy,. In the
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instantaneous rest frame of the observer at this second meeting of floor with rod,
the Lorentz transformation given in equation (4.4) can again be used to find that
the master inertial frame time for the right-hand end of the rod is later than that
for the rod’s left-hand end. But since the rod is now travelling down relative to the
floor at speed of about vy, the relationship between rod orientations as seen in the
master inertial frame and instantaneous rest frame of the observer is now reversed
as also shown in the middle panel of figure 4.2: the latter orientation is now turned
down from the horizontal orientation by angle which is again v, vy / 2. Dividing
by the total elapsed time T between the two events, one obtains a precession rate
for the rod relative to the floor

8 Ux

Orr =
02

4.5)

labelled ‘LT’ in recognition of the pioneering work of Lense and Thirring
concerning this precession in general relativity theory [6]. As seen from a frame
of reference at rest with the observer, a rod is launched (almost) vertically into
gravitational free-fall. Upon return to the ground, the rod has rotated while
nevertheless not experiencing internal centrifugal accelerations. An observer
moving at constant velocity along an upwardly accelerating floor detects his/her
own motion: there is a preferred frame on this floor established by special
relativity. In gravity, however, the only available explanation for this rotation
is the observer’s presence in a gravitational field and the leftward horizontal
motion of the gravitational source relative to the observer’s frame. In proximity
to a moving source of gravity, the local inertial frame must rotate! The
slight non-verticality of the free-fall trajectory which is another consequence of
gravitomagnetism is discussed in section 4.4.

4.3 Geodetic precession due to motion through gravity

The top panel of figure 4.3 illustrates the geodetic precession case. Two observers
are fixed on the floor: one is located where a rod is launched upward from the
floor and another is located where the rod again meets the upwardly accelerating
floor. It is convenient to orient the rod at 45 degrees with respect to the floor—
at this orientation, the two different Lorentz contractions of the rod seen in the
instantaneous rest frames of the two observers produce identical angular change
in the rod with the floor and the discussion is simplified. The instantaneous rest
frame of the observer at the ¢+ = 0 event coincides with the master inertial frame,
so the solid rod indicates the orientation measured in that observer’s instantaneous
rest frame. But the second observer is moving upward at speed of about 2v, when
the second meeting of rod and floor occurs. Therefore, the Lorentz transformation
of times given in equation (4.4) must again be used to understand this latter event.
At some time in the second observer’s instantaneous rest frame for the meeting,
the time Lorentz transformation measures a time difference for the rod’s two ends
as seen in the master inertial frame of 8t = 2v, R/ V/2¢? with R being the length
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of the rod. In this time interval, the right-hand end of the rod moves distance
Sx = \2v, vy R/ ¢? further to the right, thereby decreasing the angle between the
rod and the floor in amount v, vy / ¢2. Dividing by the total time T between these
events then yields the precession rate relative to the floor,

1
~ 8% (4.6)

@ eodetic =
& 2 2

Since the observers in this case are at rest with respect to the source of gravity,
this precession of the inertial rod must be explained as being due to the motion of
that rod transversely through the gravitational field, i.e. geodetic precession.

4.4 General consideration of the observables

A rod with clock moves at constant velocity and without rotation through the
master inertial frame as shown in figure 4.4. Att = 0, its lower end ‘1’ leaves the
floor (ground) which is upwardly accelerating. Expressed in the master inertial
frame which, for convenience, is selected to coincide with the instantaneous rest
frame of the floor at r = 0, the trajectories of the rod’s two ends are

x1(t) = vyt and ) =x1t)+ X “4.7)
y1(f) = vyt and  »m@®=n®+Y (4.8)

with X, Y, v, and vy all positive [2]. The ‘fixed ground’ clocks have no horizontal
motion and the common vertical motion

2
Y1) = c; <,/1 + (gt/c)? — 1) (4.9)

which manifests constant acceleration g as measured by accelerometers
accompanying these clocks. The y-motion given in equation (4.9) catches up
with y; (#) from equation (4.8) at master inertial frame time

L (4.10)
g 1- v3/c? '
which event occurs at horizontal location
L=vT 4.11)
with the floor moving upward at speed
. (4.12)
1+ v2/c? '
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as measured in the master inertial frame. The rod’s vertical velocity relative to the
floor, as measured in the rest frame of the floor at the reunion event, is obtained
using the special relativistic transformation rule for velocities:
vy =V
vy = 1 —}v V/c? -
y

an unsurprising result. At this reunion event, the horizontal velocity of the rod as
measured in the instantaneous rest frame of the ground is found to be equal to its
original horizontal velocity, so the trajectory’s locally measured arrival angle is
the negative of the original locally measured departure angle.

In the instantaneous rest frame of the floor at reunion with the rod end ‘1°,
the master inertial frame event coordinates are

f=yTA—v,V/?)  xj=uvT y =y -WT

with
1

YT Ao

In this frame, and at the moment its end ‘1’ meets the floor, we also want to know
where the rod’s other end ‘2’ is. From the time transformation of special relativity,
we have

=y -V +vyn)/cd)

which gives
14

RN
cc—vV

The location of rod end ‘2’ at that moment is then

xXy=X+v |T+Y v
2T * 2=V

1%
b= Y - T+Y——) ).
e )

The orientations of the rod at the two crossings of the floor can now be
compared. Constructing the tangents of the angles the rod makes with the floor in
the two instances, measured in each case in the floor’s instantaneous rest frame,

Hh=T+Y

Y
tang = (y2 — y1)/(x2 —x1) = =

X
Y 2 —v?
tang’ = (v — y))/(xy —x}) = —
¢ = —y/(xy —xp) Xycz+vaY/X—UyV

the difference between these angles represents a change in the rod’s orientation
relative to the floor in a clockwise sense. In the limit of small vertical velocities
of the rod, this rotation angle is

5 = 22 (1 — cos 29).
C
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The cos2¢ term of this expression is simply due to the change in the Lorentz
contraction of the rod as its velocity components (with respect to the floor)
have changed from (vy, vy) to (vx, —vy). The remaining constant term of the
expression is equivalent to a secular precession rate

do 1 gux

dt 2 ¢?
which confirms the conclusion in section 4.3. The SREP requires this precession
also to occur for an inertial rod which is on a free-fall trajectory in gravity.

How dramatic it would have been in the era 1907-11 when Einstein had
still no theory of gravity but only his Equivalence Principle, if he had publically
predicted not only that inertial frames are local, not global, and undergo free-fall
acceleration in gravity but also that if these frames are moving non-radially in that
gravity, they must rotate with respect to more distant inertial frames! It remained
until just after Einstein’s publication of his complete theory of general relativity
for Willem deSitter in 1916 to discover by calculation the full geodetic precession
contribution to the Moon’s perigee rotation rate with respect to distant inertial
space, one-third of which has here been shown to follow from the SREP [12].

Additional observables can be established by considering a number of
clocks, some in free motion, some fixed in position on the upwardly accelerating
ground floor and others moving at constant proper speed along the upwardly
accelerating ground floor. Each of these clocks undergoes an interval of elapsed
proper time which depends on its specific motion in the master inertial frame

dry =4/1 —vi()2/c?dr 4.14)

with df being the elapsed proper time increment of a clock at rest in the master
inertial frame. Using the previously derived master time of reunion of the rod
end ‘1’ (also carrying a clock) with the ground, given by equation (4.10), this free
clock on the rod records this reunion event at an elapsed proper time since launch

T(vy, v)F=T,/1— (V2 + vf)/c2
2uy\/— 1
=2 /1—@®? 2y/e?2——— | 4.15
2 (vz +vy)/c 1_U5/62 (4.15)

The trajectory of the fixed ground clock’s trajectory is given by equation (4.9):
integrating the proper time expression given by equation (4.14) then gives that
clock’s elapsed proper time between the launch event and the reunion event with
the free-falling clock

T
= [ V1= @anea = S g0
0

2vy 1
= E Si1’11’171 (iliw) (416)
8 c — Uy C

(4.13)
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which is independent of v,, unlike the case for the elapsed proper time of the free
(freely falling) clock.

A third type of clock permits an interesting variation on this experiment in
which the same ground clock records both the launch from and reunion with
the ground of the freely falling clock. This is achieved by giving that ground
clock an initial velocity w to the right such that it arrives at horizontal location L
simultaneously with the freely falling clock. Because of the upward acceleration
of the ground, its horizontal velocity does not remain constant as seen in the
master inertial frame: it moves according to

dx/dt = wy/1 — (dy/dt)?/c?

which, however, fulfils the requirement that no horizontal force acts on the clock
d - dx/de —0
TN

and that equal intervals of x are travelled per unit of proper time recorded on the

horizontally moving clock. Since we want the simultaneous arrival of the free-
falling clock and the clock moving along the ground, this requires

T
/ (dx/dr) dt = w/,/l — (dy/dH)?/c?dt = L
0

requiring an initial horizontal speed w which is greater than that of the freely
falling clock

T/c 1 g217
W=Vx—"T""_1 - _ gl/ = Vy 1+——g2 —+ ...
sinh™'(gT/c) 6 ¢

with T given in equation (4.10). The proper time of the reunion event as recorded
by this moving clock is 7(w)g = 1o/l — w?/c2. Since w is in excess of vy, in
the frame of reference travelling to the right with this moving clock B, the freely
falling clock is not launched vertically: it must instead be launched to the left of
vertical (see top view in figure 4.5) at angle ® = —2v, v,/ 3¢? (for non-relativistic
speeds vy and vy) and, more generally, at an angle

vy —w 1 —w?/c?

1 — wuy/c? vy

tan® =

These elapsed proper times, T (vy, Vx)F, Ta and 7(w)g, and the horizontal location
L of the reunion event from equation (4.11) are observables which must all be
reproduced in the equivalent gravity environment if the SREP is to be fulfilled.
Some of these observables are relevant to the case in which the inertially
moving rod is replaced by a light ray. Its trajectory in the master inertial frame is

X = ctcos¢ y = ctsing.
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Clock Trajectories Seen in Frame Moving Right With Respect to the Gravity Source

Clock Trajectories Seen in the Gravity Source’s Rest Frame

Figure 4.5. Clock trajectories seen in two frames of reference. Freely falling and ground
clocks, marked F, F/, A, B, in gravity are shown from two frames of reference—the lower
viewpoint is at rest with respect to the gravity source and the upper viewpoint moves to the
right at speed w (the source of gravity moves to left at speed w). In the frame in which
gravity’s source is at rest, clock F' is launched into vertical free fall and ground clock A
waits at rest for the reunion. In the same frame, clock F is on a free-falling trajectory which
moves to the right, and clock B moves on the ground at constant velocity to the right to
meet the return of F to the ground. Proper times at the various reunions of these clocks and
other related observables are calculated in the gravity-free but accelerating ground floor
situations; and fulfilment of the SREP requires that those results must all be reproduced
in each of these two illustrated situations in gravity (the four clock times are shown in the
lower view). This specifies modifications of the gravitational equations of motion when
these equations are stated in the frame moving with respect to the source of the gravity,
including gravitomagnetic terms which are proportional to the velocity of the gravity’s
source.

The time recorded by a clock at rest in the master inertial frame for the reunion of
the light ray with the ground is then

_ % 2sin¢
"~ g (cos¢g)?

4
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which then determines the elapsed proper time for the ground clock at reunion

with the light ray
¢ . _1{2sing
Tc = — sinh 5 . “4.17)
g cos“ ¢

This proper time is simply obtainable from equation (4.16) by taking the limit of
a free body which travels at the speed of light. The second observable is the light-
ray launch angle which results in a horizontal location for the reunion of light ray
and the ground equal to that for the rod:

gL
2¢2°

There is, of course, no elapsed proper time for a ‘clock on a light ray’.

tang =

4.4.1 Moving gravity source

Trajectories of these various clocks and the light ray in the gravity environment
are shown in figure 4.5. The lower picture gives the scene in the rest frame of the
gravity source and the af rest ground clocks. The upper picture gives the scene in
the frame of the clock which moves to the right so as to record the reunion of the
freely falling clock launched to the right. When the unusual motion of the freely
falling clock in the upper scene is also required to occur in gravity, additional
gravitomagnetic-like acceleration terms to the freely falling clock’s equation of
motion are required which are in proportion to the motion of the gravity source in
that frame of observation.

Another consequence of performing measurements in the frame moving
with the ground clocks at speed w is a change in the measured local value of
gravitational acceleration. Since this moving clock will experience an elapsed
proper time smaller than that of the ground clocks at rest,

T(w)p = tay/1 — w?/c? (4.18)

and the vertical speed of the launched freely falling body is enhanced as measured
in this frame (time dilation),

1
. —
V1—w2/c? Y

observers accompanying the horizontally moving ground clocks record a local
gravitational acceleration of

/7
Vv, =

§w) = ——— ¢ = (1 + wd/cdg
1 —w?/c? '
The SREP’s enforcement of this will require further modifications of the

gravitational equation of motion when expressed in frames in which the source
of gravity is moving.
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A clock launched vertically in the frame which is not horizontally moving
relative to gravity’s source can also be viewed from the rest frame of the ground
clocks which travel to the right. The elapsed proper time for the freely falling
clock in that case is obtained from equation (4.15) with v, = 0

2vy 1
T(vy, O = —

& /1— vg/c2

In the frame of reference moving horizontally along the ground at speed w,
this situation is seen as a clock launched into gravitational free fall and moving
to the left, along with another clock also moving to the left along the ground
such that it meets the freely falling clock at its reunion with the ground. A
further gravitomagnetic acceleration term will be required to obtain equivalent
observational outcomes when this situation is considered in gravity.

4.5 Requirements for equivalent predictions in gravity

All the phenomena and situations considered in the preceding sections must
be considered again in an environment of real gravitational acceleration g as
measured on the ground. The outcomes for all the observables previously
obtained by kinematical calculations in gravity-free space must be reproduced
under identical arrangements in the gravity environment if the SREP is valid. To
achieve this, 1/c* order gravitational corrections to the equations of motion for
freely falling bodies, to the expression for the proper tick rates of clocks in gravity
and to the speed of light function are required [3]. Expressing each of these three
equations in terms of a proper time variable T which represents the elapsed time
of clocks at rest, the modified rate for clocks in general motion and at general
altitude above the ground is assumed to be

12 g-r
dt(r,v) =dr 1—§C—2 +alc—2 . (4.19)

The equation of motion for bodies freely falling in the gravity is assumed to be

d%r v? g-r (& - v)? g-vv
m”(”“zc—z*‘“ Tt |tatg 620

with v = dr/dr. And the light speed function in gravity is assumed to be
|dr| g-r
e =" =c(1+a2). (421)
dr c?

Values for the numerical coefficients in these three equations, a; . . . ag, are sought
so that the observables previously obtained kinematically in gravity-free inertial
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space are reproduced in the corresponding situation in gravity. A unique solution
will result.

A freely falling clock is launched with the same initial velocity used
previously—(vy, vy). The horizontal equation of motion from equation (4.20)

is first considered:

d2x g dy dx

— = —u—=———.

dr? c2drdr
Since the right-hand side of this equation is already proportional to 1/c2, the
Newtonian trajectory for the freely falling body

X(T) = Uy T y(1) =vyT — %gtz

can be employed in its evaluation. Integrating this horizontal equation of motion,
demanding that the distance given in equation (4.11) is reached at the proper time
given by equation (4.15):

2vyvy 1

G T dzx
= U, TG + / dr —drt to order 1/c2
0 0

g 1—v2/c? dr?

requires
aq = —2.
The vertical equation of motion from equation (4.20) is now considered:

2 2
(1 |, @y/dD) ;(dx/dr) -

(dy/dr)?
6‘2

d2y _
a2 = ¢

8y
as 7+ (as —2)
(4.22)
in which the result for a4 has been incorporated. Since the proper time for
the reunion of clock and ground as recorded by the ground clock is given by
equation (4.16) and is independent of the horizontal speed of the body. This result

can only emerge when solving equation (4.22) if
ar» = 0.

The remaining dimensionless coefficients in equation (4.20) are fixed by using
the Newtonian motion on the right-hand side, integrating from the initial vertical
position 0 and speed vy, and requiring both the return of the freely falling clock
to the ground and the reversal of the vertical velocity to —vy to occur at time Ta.
This yields

ay = —1 as = 0.

The proper time of the reunion with the ground as recorded by the freely
falling clock is obtained by integrating the clock rate expression given in equation
(4.19). Demanding that the result be equal to the kinematically derived amount
given in equation (4.15) yields the value of the ‘red-shift’ coefficient in equation
(4.19)

a; = —1.
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It should be noted that this derivation of the gravitational ‘red-shift’ of clock
rates did not employ light-ray propagation between differently located clocks.
Combining these results for the clock rate expression and the equation of motion
expression, their coefficients now determined, the locally measured acceleration
rate for a body instantaneously at rest is found to be dependent on altitude

8y
gMlocal = & (1 - _2) .
C

In the limit of small initial elevation angles, light rays move in gravity along
the curves

y(x) = %x(xy —x).

The proper elapsed time of ground clocks for the reunion of the light ray with the
ground has already been determined and is given in equation (4.17). Demanding
this same elapsed proper time in gravity, the light-ray speed function is assumed
and integration over the light trajectory is performed to obtain the total elapsed
time. Corrections to the light trajectory of order 1/c* need not be considered as
they will generate only 1/c* order corrections to the result. Therefore,

(xy,o) dxz + dyZ
e = / VT dy?
(0,0) c(r)

This is fulfilled for the coefficient value
ag = —1

which appears in the light speed function, equation (4.21). Combining this result
with the clock rate expression given by equation (4.19), the locally measured
speed of light is found to be independent of altitude in gravity.

In conclusion: In a frame of reference at rest with respect to a source
of gravity which locally (at the ground) produces a gravitational acceleration
g and speed of light ¢ as measured by clocks at rest on the ground, then the
equivalence of all local phenomena to that which occurs in an accelerated but
force-free environment requires the following 1/c? order modifications to the local
equations of motion for bodies, clocks and light [4]

d2r g-r g-vv
drrovy =de (1- 22 8T (4.24)
t(r,v)=dt [1—=-— — 2 .
2 ¢? c?
_ _&r
c(r)_c(l S ) (4.25)
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4.5.1 Geometrical interpretation

This body equation of motion is obtainable from the particle Lagrangian

L 1, 1+1v2 n 1+1v2
= — _— -r —-—
2" 42 T¢# 22

which, to the exhibited l/c2 order, is equivalent to a geometrical least action

principle
8A=0=5/\/g,wdxl‘dx” W, V=1=1,X,9,2 (4.26)

with the dominant time—time component of the metric tensor being altered from
the Minkowski metric value n;; = 1, while the spatial values remain unchanged;

Nxx = Nyy = Nzz = _1/6'2

gn = (1—g-r/cH>
The light speed function given by equation (4.25) then follows from the null-
geodesic assumption

guvdx*dx" =0 for light (4.27)

and the clock rate equation (4.24) is the Lagrangian invariant
dt = /guv dxtdxV.

4.5.2 Moving gravity source

An equation of motion for freely falling bodies which is valid in more general
frames in which the source of the gravity moves would be informative. In this
situation, additional acceleration terms must be considered which are functions
of the gravity source’s velocity vs. By considering the previous phenomena from
a reference frame which moves at constant velocity along the ground, three such
terms can be determined:

2

) (d—ﬁ) = %(mg - VU + agv - Vg + a0Vl g). (4.28)
dr c

Because the source velocity v is orthogonal to the local gravity direction in these

situations, a number of other possible acceleration terms proportional to g - vg are

not brought into play and so remain undetermined by these SREP arguments.

In the case of the clock originally launched up and to the right, with a ground
clock following along the ground so as to arrive at the reunion of clock with
ground, we recall that in the frame which follows the ground clock, the freely
falling clock was launched not vertically upward but at an angle to the vertical of
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© = —2v,vy/3c? (to leading order in 1/c?). As illustrated in figure 4.5, it then
moved on a closed trajectory which finished at its starting point on the ground.
Demanding this outcome from the x-component of our body’s equation of motion
with the source of gravity moving to the left, then requires

vay Zvy ZU‘/g 2”)/g
5 —+ 7/ dt/ z(vy gt)ydt =0
C

with w = v,. This requires a; = 2. And, as previously indicated, the vertical
acceleration in this frame is not g, it is g(w) = g(1 + w?/c?) which requires
ag = 1.

If the case of the clock vertically launched in the original frame is now
considered in the frame moving to the right at speed w, the vertical speed with
which it was launched is vy (1 — w? /2¢?) to lowest order in 1/c2, while the total
proper time for the ground clock travelling to the left to meet the freely falling
clock at reunion with the ground is as given in equation (4.18). Since this moving
clock’s proper time runs at a rate slower than that of the ground clocks at rest in
this frame by the factor

dr 1 w?
1—w?2/c2>=1 - -2
drqwy ~ViI—w/e 22

the vertical acceleration of the freely falling clock must be g (1 —w?/c?) to lowest
order in w2. This fixes the final coefficient in equation (4.28) to be ag = —2.

The entire equation of motion, equation (4.28) plus the contributions from
equation (4.23), is then

d?r g-r U52 2 2
P:g 1—7—1—? g vv+ vx(vsxg) (4.29)

A moving gravity source also changes the speed of light function. A Lorentz
transformation to the frame travelling to the right at speed w relates the launch
angle of the light ray which will be seen in this frame to the original launch angle

or for small angles
o = +w/c).

But the maximum height above the ground which the light ray reaches is
unchanged by this transformation and is given approximately by

1, (de\!
h=—¢? ( —
2 cdy
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The gravitomagnetically modified light speed function
cr) = c (1 -8 -2 vs/c)) (4.30)
c

is required to achieve this equivalent result: ¢ is the unit vector in the direction of
light propagation and again vy is the velocity of the source of gravity.

These SREP results for a moving source are in agreement with what one
obtains by applying a Lorentz transformation to the metric field previously found
in the gravity source’s rest frame. From the transformation rule for a second rank

tensor,
ax® axP
/
Euv = ZZ Jx'1 ax“’ 8ap

and the lowest-order expression of the Lorentz transformation,

r=r’ — vt
=1 —v-r')c?
a spatial vector of (mixed time—space) metric components is obtained:
8o = g(/)i =2¢g- r(vs),'/c4 componentsi = x, y, z
which, when inserted into the action principle given by equation (4.26), generates

the new Lagrangian term

SL = —2g rvs-v/c*. (4.31)

4.6 Periastron precession

Just about any modification from an inverse square central acceleration law causes
the major axis of Keplerian orbits to precess in inertial space. This holds, in
particular, for the modifications to the equation of motion which result from the
SREP as given by equation (4.23). Consider a body which is close to being in a
circular orbit around a central body. Small perturbations are considered from the
mean circular motion so that the time evolution of the eccentric deviations from
circularity can be derived and compared to the mean orbital motion. Starting with

the radial and tangential equations of motion

dzr ( ) N + 2
— =g, v)-T+or
a2 = ¢

d n
a(#w) =rg(r,v)-1

small perturbations are considered about a circular orbit, r — r + x(7), w —
o + Sw(t). The needed acceleration components from equation (4.23) are

g F=—g(l+gx/c?
P 2gv dx
§1="2 47
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with v being the horizontal velocity of the mean circular orbit. The linearized
equation for radial perturbation x (7) then becomes

d?x , dg 3g%
P—i_(?’w +a—c—2 x=0

with the radial tidal gradient of the solar system’s total acceleration field dg/dr
added, and the relationship ¢ = vw being used to simplify the radial and
tangential 1/c? order perturbation terms. The resulting radial perturbation is
simple eccentric harmonic motion with arbitrary amplitude and phase determined
by initial conditions. But this eccentric motion’s frequency w, is specific, and
relative to the orbital frequency, it is shifted by the SREP modifications of the
dynamics to be slightly less than what it will be due solely to the tidal gradient
dg/dr. This increased frequency difference between orbital and eccentric motions
appears in space as an addition to the total precession rate of the orbit’s major axis
in the positive sense of the orbital motion (prograde precession), and of amount

~3 2 2 L3
5(w—wo)=§g /(wC)=§—

2

Prior to Einstein’s development of his special relativity theory in 1905
and the formulation of his EP beginning in 1907, a century of astronomical
observations had already discovered about a 43 arcsec/century precession rate
for Mercury’s orbit in excess of what could be understood from consideration of
the Newtonian perturbations by the other known planets in the solar system. Half
this anomalous precession is here accounted for from the SREP:

302 -
3 —® = 22.5 arcsec/century. (4.32)
¢ Mercury

4.6.1 A historical speculation

As early as December 1907, Einstein mentioned in a letter to a friend that, ‘T am
now occupied with a relativistic treatment of the law of gravity, with which I hope
to explain the anomalous secular change in the perihelion of Mercury.” And he
added in a footnote, ‘Up to now the thing doesn’t appear to want to succeed’ [5].
Had Einstein arrived at the SREP’s prediction, equation (4.32), about this time?
By then he certainly was in a position to extend his EP to a full SREP. Perhaps he
had done so but chose not to publish the consequences of a full special relativistic
generalization of his principle because this perihelion prediction was only half
the known anomaly in Mercury’s orbital motion? Yes, his prediction of light
deflection from the EP was also only half that which would eventually emerge
from his complete gravity theory of 1915/16 but in 1907 neither the full theory’s
prediction for light deflection nor its experimental measurement during the eclipse
of 1919 were available to create a conflict.
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However, continued work toward a complete relativistic theory of gravity
may have been spurred on by such an anomalous early EP-inspired estimate which
produced contributions to Mercury’s perihelion precession rate with magnitude
being a simple fraction of the observed anomaly of 43 arcsec/century. From
several letters from Einstein to colleagues written around the end of 1915, Einstein
mentioned that one of the things which had kept him searching right up until the
end for a better metric tensor theory of gravity was that his ‘old theory’ only
explained half Mercury’s anomalous perihelion precession. And then when he
recalculated this effect in November 1915 using the new vacuum field equations
of his final metric tensor theory of general relativity and did obtain the full
anomaly ‘without any special hypothesis’, he mentioned in another letter that
this produced one of the strongest emotional experiences of his career: ‘for a
few days I was beside myself with joyous excitement’. It appears clear that the
Mercury orbit anomaly played a continuous and key role in Einstein’s search for
a new theory of gravity. Many narratives of this scientific revolution seem to have
minimized this part of the story and the focus on the later confirmation of the
theory with the measurement of the deflection of light during the 1919 eclipse
further overshadowed the perihelion precession phenomenon.

4.7 Summary

Incorporating the special relativity theory more fully into Einstein’s principle of
equivalence between the phenomena in accelerated frames of reference and that
in local gravitational fields has led to the prediction of a number of additional
effects in post-Newtonian gravity. These include geodetic precession of local
inertial frames which follow non-radial, free-falling trajectories through gravity,
precession of Mercury’s perihelion and gravitomagnetic forces between matter
proportional to the velocities of both source matter and acted-upon matter, as well
as gravitomagnetic precession. And the original predictions of Einstein’s EP are,
of course, also predicted—universal reduction of clock rates and both deflection
and slowing of light in gravity.

The SREP predictions do not generally account for the entire physical effects
which are now routinely measured by experiments. Within the general class
of locally Lorentz-invariant, complete metric theories of gravity—all of which
fulfil the SREP—a variety of calculated post-Newtonian gravitational effects
are now listed and expressed in terms of two dimensionless parameters, y and
B* = 2B — 1, which identify and quantify the post-Newtonian features of the
metric theories which go beyond the local physics specified by the Equivalence

Principles.
1v? g-r
dr=dt |[1—z—= —1
T ( 22 c2 )

c(r) = c(l — (1+y)%)
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2
v
QMerc = 3/2+2y — :3*/2)6_20)

v X (g X vg)
QAgray—mag = 2+ 2)’)#

Mg pxX)p(¥) 3 3
M =14+1+y—-28" )2Mc / x| d’xd’y.
SREP contributions are shown in bold numbers. These parameterized post-
Newtonian (PPN) expressions for different (albeit theoretically connected)
gravitational effects have been known for decades [8-10]; indeed, it was
my awareness of the contributions to these several phenomena which were
independent of the specifics of the particular metric theory that motivated this
investigation. It is the SREP which dictates these universal contributions to post-
Newtonian gravity.
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Appendix

Beginning with an underlying metric field theory of gravity which is locally
Lorentz-invariant, a 1/c? order, N-body Lagrangian can generally be derived.
The part of this Lagrangian which is independent of the specifics of the metric
theory and which manifests both local Lorentz invariance and the EP is

1 1
LSREP=Z<2mU +82 4)
i
m;m 1
+ = Z j( ﬁ( SV F ;- rl]rlj v]))

rij

422% (i —v))°

with the first line by itself being Lorentz-invariant to 1/c2 order but the additional
Lorentz-invariant term on the second line being also needed in order to fulfil the
EP. Focusing on one of the N-bodies in the presence of N — 1 other quasi-static
sources of gravity seen by the selected body, one can expand this Lagrangian
about a chosen origin, rescale the time variable into the proper time variable
at this origin and then reproduce the SREP-derived equation of motion given
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by equation (4.23). Giving the source bodies motions v, the SREP-derived
gravitomagnetic equation of motion corrections found in equation (4.29) can also
be obtained.

But there is additional 1/c? order gravitational physics beyond the SREP. It
results from two Lagrangian terms

G m;m;
LV:yz_&Z :’”j(v,'—vj)2
ij Y

2 o
Ly = — g G Z mim;mg
2¢2 TijTik
j.k

with the indices i, j, k each being summed over the N bodies [11]. The two new
coupling strength parameters have special values in general relativity, ygr = 1
and B5g = 1 (B = (14 B%)/2 is the more traditional PPN, Eddington coefficient)
[7] but they individually have different values in scalar—tensor metric theories, for
example. In addition to contributing to additional gravitomagnetic interaction, the
Lagrangian term L, produces a global non-Euclidean geometry for the arena of
physical events and objects. But locally this deviation from the Euclidean nature
of space can be delayed. At a chosen locality rg, a sequence of spatial coordinate
transformations involving first a rescaling of the spatial coordinates

x'=(1+yUrg)/cHx

with U (rp) being the Newtonian potential at r¢ of the gravitational sources, and
X = r — ro, and then the nonlinear warping of the coordinates
’r_ 2 1
x —P+ﬁ)/g,0 —C—z)/g'PP

the locality only experiences the onset of non-Euclidean spatial effects at the
quadratic order in laboratory size. The nonlinear Lagrangian term L g, produces
three-body gravitational interactions and it also produces modifications to the
gravitational potential between two bodies whose strength is proportional to the
square of one mass or the other and depends on the inverse square of body
separation. Neither of these two Lagrangian terms can be inferred by SREP
arguments: a full field theory of gravity is required for their specification.
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Chapter 5

Lunar laser ranging: a comprehensive
probe of post-Newtonian gravity

Kenneth Nordtvedt
Northwest Analysis, 118 Sourdough Ridge, Bozeman, MT 59715,
USA

5.1 Introduction

The precise fit of the lunar laser ranging (LLR) data to theory yields a number
of the most exacting tests of Einstein’s field theory of gravity, general relativity,
because almost any alternative theory of gravity predicts a number of changes
(from that produced by general relativity) in the lunar orbit which would be
readily detected in the LLR data. Some of the most interesting and fundamental
of such theory-dependent effects and which are particularly well measured by
LLR include (1) a difference in the free-fall rate of the Earth and Moon toward
the Sun due to gravity theory’s nonlinear structure acting on the gravitational
binding energy within the Earth, (2) a time variation in Newton’s gravitational
coupling parameter, G — G(¢), related to the expansion rate of the universe
and (3) precession of the local inertial frame (relative to distant inertial frames)
because of the Earth—Moon system’s motion through the Sun’s gravity.
Measurements of the round-trip travel times of laser pulses between Earth
stations and sites on the lunar surface have been made on a frequent basis ever
since the Apollo 11 astronauts placed the first passive laser reflector on the Moon
in 1969. Today about 15 000 such range measurements are archived and available
for use by analysis groups wishing to fit the data to theoretical models for the
general relativistic gravitational dynamics of the relevant bodies, the speed of light
function in the solar system, tidal distortions of Earth and Moon, atmospheric
corrections to light propagation, etc. An individual range measurement today has
a precision of about a centimetre (one-way) but a new generation of observing
program plans to improve this range measurement precision down to a millimetre.
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Because of the large number of range measurements, some of the key length
parameters which describe the lunar orbit are already estimated with precision
of a few millimetres, and key lunar motion frequencies to fractional precisions of
a few parts in 10'2.

Because both the Earth’s mass and that of the Moon are sufficiently large,
the orbits of these bodies can be modelled as single orbital ‘arcs’ extending
over three decades through time. The complete model used to fit the many
range measurements contains in excess of a hundred parameters, P,,, which are
optimally adjusted from their nominal model values Pn(f ) by amounts § P, =
Py — P,ﬁ,o) determined in a weighted least-squares fit type procedure:

N M
Minimize Z Wi Z [f(m)i8 Py —rillf(n)j6 Py —1}]

i,j=1 m,n=1

with the N range measurements being identified by the labels i and j and the M
model parameters being identified by the labels m and n. W;; are the weightings
given to each measurement (pair) and are usually taken to be diagonal in ij
and inversely proportional to the square of inferred measurement errors; the
residuals r; are the differences between observed and calculated range values,
ri = Robs(ti) — Rcalc(?i); and the remaining functions f(m); are the parameter
partials which give the sensitivity of the modelled (calculated) range to change in
each model parameter value

0 Realc (ti)

fim); = oP,

evaluated at the time #; of the ith range measurement.

Among the very many model parameters, the information needed for testing
relativistic gravity theory is concentrated in only a handful of orbital features. The
needed orbital parameters are connected with four key oscillatory contributions
to the lunar motion, the eccentric, evective, and variational motions and the
parallactic inequality, which are illustrated in figure 5.1. The eccentric motion
produces an oscillatory range contribution proportional to cos(A), A being the
anomalistic (eccentric) phase and is a natural and undriven perturbation of circular
motion. The variation is driven by the Sun’s leading order quadrupolar tidal field
and produces a range contribution proportional to cos(2D), D being the synodic
phase from the new moon. The parallactic inequality is driven by the Sun’s next-
order octupolar tidal field and its range perturbation cos(D) has a monthly period.
The evection is a hybrid range perturbation proportional to the eccentric motion
as modified by the variation and having a time dependence cos(2D — A). The
eccentric and evective motions, which alter the times of eclipses, were discovered
by the ancients: the variation and parallactic inequalities, which do not alter the
times of eclipses, were only found during and after the era of Newton.

The amplitude of the parallactic inequality, Lpy, is unusually sensitive to
any difference in the Sun’s acceleration rate of the Earth and Moon [2]. The
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Variation (2956 Km) Parallactic Inequality (110 Km)

Figure 5.1. Lunar orbit’s four main perturbations. Four lunar orbit perturbations from a
nominal circular orbit (dotted) are shown. They produce oscillatory Earth—-Moon range
terms: the eccentric oscillation ~ cos(A), the variation oscillation ~ cos(2D), the
parallactic inequality oscillation ~ cos(D), and the evective oscillation ~ cos(2D — A),
with respective amplitudes indicated. Key tests of general relativity are achieved from
precise measurements of amplitudes or phase rates of these perturbations. Measurement of
the amplitude of the parallactic inequality determines whether Earth and Moon fall toward
the Sun at same rate. Measurements of the synodic phase D and anomalistic (eccentric)
phase A rates and rate of change of these rates determine the deSitter precession of the
lunar orbit and time rate of change of Newton’s G.

frequency of the eccentric motion, the anomalistic frequency A, when compared
to other lunar frequencies determines the precession rate of the Moon’s perigee.
This rapid precession, which completely rotates the orbit’s major axis in about
8.9 yr, is primarily driven by the Sun’s tidal acceleration but there is a leading
order relativistic contribution to this precession rate interpreted as an actual
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rotation of the local inertial frame, the de Sitter precession, resulting from motion
through the Sun’s field of gravity. From measurement of the time rates of
change of the Moon’s anomalistic and synodic frequencies, A and D, a rather
clean measurement can be made of a time rate of change of Newton’s coupling
parameter G. The Earth—-Moon range model can be expressed in terms of these
primary contributions

r(t) = Lo — Lecc €0S(A) — Leye c0S(2D — A) — Lyarcos(2D) — Lprcos(D) + - - -

with phases advancing as A = A, + A(t — 1)+ A(t — t(,) / 2 +- - and 51m11arly
for the synodic phase D. The LLR measurement of Lpj, A, D, A, and D forms
the foundation for the gravity theory tests.

5.2 Dynamical equations for bodies, light and clocks

LLR comprehensively tests the 1/¢? order, gravitational N-body equations of
motion which analysis groups integrate to produce orbits for the Earth, Moon
and other relevant solar system bodies. The Sun—-Earth—-Moon system dynamics
is symbolically illustrated in figure 5.2, with the rest of the solar system bodies
sufficiently considered at the Newtonian level of detail. The Earth moves with
velocity V and acceleration A with respect to the Sun, while the Moon is moving
at velocity V + u and acceleration A + a. (If preferred frame effects were to
be considered for cases when gravity is not locally Lorentz-invariant, the Sun’s
cosmic velocity W also becomes involved [4].) There are a variety of post-
Newtonian forces acting on the Earth and Moon through the Sun, each other
and on themselves (self-forces) which are dependent on these general motions.
Included in these are nonlinear gravitational forces for which each mass element
of the Earth and Moon experiences forces due to the interactive effect of the
Sun’s gravity with the other mass elements of the same body or of the other
neighbouring body. The accelerations of individual mass elements of Earth also
induce accelerations on the other mass elements of Earth and similarly with the
Moon. Acceleration of the Earth induces an acceleration of the Moon. Altogether,
these 1/c? order accelerations produce a rich assortment of modifications of the
Earth—-Moon range which LLR can measure.

The N-body equation of motion in metric gravity has been formulated
in the literature for the completely general case [16]. Not observing any
violations of local Lorentz invariance or breakdown of conservation laws in solar
system gravity, I here give special consideration to the fully conservative, locally
Lorentz-invariant, Lagrangian-based gravitational equation of motion (plus the
cosmological variation of Newton’s G). For N bodies in general motion and
configuration and valid for a broad class of plausible metric theories of gravity,
scalar—tensor theories in particular, the order 1/¢? equations of motion for these
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Figure 5.2. Velocities and accelerations of Sun, Earth and Moon. When formulating the
Earth—-Moon dynamics in the solar system barycentric frame, there are post-Newtonian
force terms acting between Sun, Earth and Moon which depend on either the velocity
or acceleration vectors of both the Earth and Moon. Body self-accelerations also result
from the inductive inertial forces acting between the mutually accelerating mass elements
(i, j) within each of these bodies. The intrinsic nonlinearity of gravity also produces net
external forces on these bodies proportional not only to the presence of other bodies,
but also to their internal gravitational binding energies. The motional, accelerative and
nonlinear contributions to the three-body system’s dynamics, taken collectively, make LLR
a comprehensive probe of the post-Newtonian dynamics of metric gravity in the general
case. If the dynamics is not locally Lorentz invariant, then the velocity W of the solar
system through the cosmos leads to novel forces and resulting observable effects in LLR
proportional to W (or its square) but such effects have not been seen.
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ji Y
with v; = dr;/dt, a; = dv;/dt, r;j = |r; —rjlandi, j,k =1,..., N. The
speed of light factor 1/c2 has been set equal to one in lines B to F to simplify

presentation. The body gravitational mass strengths u; = GM(G); are indicated
along with the Newtonian acceleration vectors

Wi
8ij =—3j"ji and 8i ZZgij
ij J#i

y and B (with B* = 28 — 1) are two Eddington parameters which quantify
deviations in metric gravity theory from Einstein’s pure tensor theory in which
both these parameters equal one. Several lines of this total equation of motion
warrant individual descriptions and brief discussions.

(1) Line A. If the metric theory Eddington parameters y and 8 differ from their
general relativistic values ygr = Bgr = 1, application of the equation of
motion relativistic corrections from lines B through F to a body’s internal
gravity finds that the gravitational to inertial mass ratio of a celestial body
depends on its gravitational self-energy content [1]:

MG G
-y

M(I) Mo Exdy+01/ch. (5.2)

Another way to view this ratio is in terms of a spatially varying gravitational
coupling parameter G

G(r,1) = Goo[l — (4B =3 — y)U(r, 1)/c?]

in which a body with a significant part of its mass—energy coming from its
gravitational binding energy experiences the additional acceleration

da; = — c“’VG
oG

with the leading gravitational energy contribution to body mass being the
Newtonian contribution

M _ G [pmp)

=—— &rdr.
oG 22) r—r °7CT

When cosmological equations from a metric theory are considered, Newton’s
coupling parameter G will also generally be found to vary in time in
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proportion to the Hubble expansion rate of the universe

G
G ~ 4B -3 —-y)H. 5.3)

The presently most precise way to measure any deviation of 8 from its
general relativistic value is through measurement of the M (G)/M (1) ratio
of Earth using LLR data.

(2) Line B. Gravity couples to itself, thereby producing nonlinear gravitational
forces among and between bodies.

(3) Line C. Just as pairs of moving charges generate magnetic forces between
themselves in proportion to the velocities of both charges, pairs of moving
masses generate gravitomagnetic forces between themselves. This force
acts between the mutually moving Earth and Moon and contributes to the
necessary Lorentz contraction of the lunar orbit as viewed from the solar
system barycenter.

(4) Line D. Masses in motion both produce and couple to gravitational
fields differently than masses at rest. The package of velocity-dependent
acceleration terms in this line plus line C lead to the local Lorentz invariance
of gravity. Any further modifications of this package (beyond the y-
dependence) will lead to additional terms in the equation of motion with one
or two powers of body velocities being replaced by the velocity W of the
solar system relative to the universe preferred frame. A variety of preferred
frame effects which would then result have been empirically ruled out in
LLR and other solar system observations [5].

(5) Line E. Accelerating masses generate inductive gravitational forces on other
proximite masses.

(6) Line F. The inertia of a mass is altered by its motion and by its proximity
to other masses. The combination of terms from this line plus line E are
necessary in order that a body’s gravitational self-energy contributes to its
total inertial mass in accord with special relativity’s prescription M = E /c2.
This modification of inertia is part of the M(G)/M(I) calculation for a
celestial body.

LLR measures the round-trip time of the propagation of light between two
separate body trajectories, and this measurement is made by a specific clock
moving on a particular trajectory. So in the solar system barycentric and spatially
isotropic coordinates employed to express the body equations of motion given by
equation (5.1), there are also requirements for the post-Newtonian modifications
to the light coordinate speed function and to the clock rates, these respectively
being

c(r, ) = cooll = (1 +)U(r, 1)/c?] (5.4)

and
dr Z di[1 — v?/2¢% = U(r, 1) /c?] (5.5)
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in which U (r) is the total Newtonian gravity potential function due to solar system

bodies G (1)
plrt PN N 3 /
Ur.1t) = Z/ o 4 (5.6)

Because the Earth moves in the solar system barycentric frame and it rotates at
rate v, there must be two corrections applied to an Earth surface location a: first
there is the Lorentz contraction of the extended body

sa=—a-VV/2?

and because of special relativity’s non-absolute nature of time simultaneity there
is a further displacement of the rotating Earth surface locations

sa=V - -aly x a)/cz.

These light and clock equations and special relativistic body distortion effects
play only supportive (but necessary) roles in fitting LLR data: the main science
emerges from the body equations of motion as given by equation (5.1).

5.3 LLR’s key science-related range signals

Associated with each feature of gravitational theory which is tested by LLR,
there are specific range signals in the LLR data whose measurements yield the
information about theory. Several of these signals are here described.

5.3.1 Violation of the universality of free-fall

Because celestial bodies have gravitational self-energies (internal gravitational
binding energies), they will generally possess gravitational to inertial mass ratios
which differ from each other as indicated in line A of equation (5.1) and given
by equation (5.2). But there are other ways in which bodies may accelerate at
different rates toward other bodies. Within the paradigm that forces between
objects are carried by a field, an additional long-range interaction in physical law
generates a force between bodies i and j which will typically have the static limit
form

Kj —ur;

fi=KVi—e Hii, 5.7

ri j
The bodies’ coupling strengths K; and K ;, except in special cases such as metric
scalar—tensor gravity in which K; ~ M;, will be attributes of the bodies which
are different than total mass—energy (non-metric coupling); and the dependence
on distance of this force will be either inverse square if the field is massless or
Yukawa-like if the underlying field transmitting this force between bodies has
mass. Such a new force will produce a difference in the Sun’s acceleration of the
Earth and Moon, because the latter two bodies are of different compositions—the
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Earth has a substantial iron core while the Moon is composed of low-Z mantle-
like materials. The fractional difference in acceleration rates of Earth and Moon
amounts to

|darm/gsl =

Ks Kwm Kg
GMs \ Mym Mg

) (14 pR)e #k

and it will supplement any difference in the accelerations resulting from the
possible anomalies in the bodies’ gravitational to inertial mass ratios due to
gravitational self-energies. LLR has become a sufficiently precise tool for
measuring |dagy| and it now competes favorably with ground-based laboratory
measurements looking for the composition-dependence of free-fall rates. LLR
is also the premier probe for measuring a body’s M (G)/M (I) ratio as given by
equation (5.2).

If the Earth and Moon fall toward the Sun at different rates due to either
of the mechanisms discussed here, then the lunar orbit is polarized along the
solar direction. Detailed calculation of this polarization reveals an interesting
interactive feedback mechanism which acts between this cos(D) polarization and
the cos(2D) Newtonian solar tide perturbation of the lunar orbit, the variation).
The result is an amplification of the synodic perturbation

3Q
Sr(t)ME = E—RF(Q/a))éEME cos D (5.8)
w
=29 x 101251\4}3 cos D cm

with 6gm = [(@g — am)/gsl, R is distance to the Sun, 2 and w are the sidereal
frequencies of solar and lunar motion and D is the lunar phase measured from
new moon. The feedback amplification factor for the lunar orbit is already
F(Q2/w) = 1.75: it grows further with larger orbits with an interesting resonance
divergence for an orbit about twice the size as that of the Moon [14, 15].
Computer integration of the complete equation (5.1) for the Sun—Earth-Moon
system dynamics confirms these analytically estimated polarization sensitivities.

The most recent fits of the LLR data find no anomalies in the cos(D)
amplitude to a precision of 4 mm, so from equation (5.8) dug is constrained to
be less than 1.3 x 1013, Neglecting any possible composition dependence and,
using equation (5.2) with an estimate for the fractional gravitational self-energy
of the Earth being 4.5 x 10~19, the following constraint on a combination of the
two Eddington parameters is

4 =3 —y| <4 x 1074 (5.9)

If metric gravity is a combination of scalar and tensor interactions, the small size
of this constraint is an approximate measure of the scalar interaction strength
compared to the dominant tensor interaction. One scenario which could explain
today’s weakness of the scalar interaction is illustrated in figure 5.3. Scalar—tensor
metric gravity involves one coupling function V (¢): the slope of this function
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gives the strength of the scalar interaction and, in combination with the function’s
curvature, also determines gravity’s 1/c? order nonlinearity. Near an extremum
of V(¢), the Eddington parameters are given by simple properties of the coupling

function:
L1 (dlnV@g)\!
1—y_2< i ) (5.10)
~1—y &V
ﬂ_l__§__7@7_' (5.11)

As the universe expands, the dynamical equations for the background scalar field
will drive the scalar to a minimum of the coupling function, if it exists, and
where y and § take their general relativistic values. Scalar gravity turns itself off
naturally if an ‘attractor’ exists in its coupling function V (¢). But that process,
being dynamical, should not be entirely complete today, and the small remnant
of the scalar interaction may still be detectable by sufficiently precise testing of
relativistic gravity using LLR and other experiments [8, 9].

The LLR result can also place limits on the spatial gradient of the fine
structure constant, « = e?/hc, in the proximity of the Sun. If « is a function
of a scalar field whose source includes ordinary matter, a spatial gradient of «
near bodies should exist and composition-dependent accelerations of other objects
toward this body should occur:

alan- ZVC(
cT—.

5(1i = —
JdIna o

The dominant electromagnetic contribution to the mass—energy of different
elements is due to the electrostatic energy among the Z nuclear protons. This
energy fractionally varies by an order of magnitude (from a few parts in 10* to a
few parts in 10%) as one proceeds through the periodic table from low-Z to high-Z
elements. For the Earth with its iron core and the Moon composed almost entirely
of mantle-like materials, one can conclude from the LLR constraint on g that
any gradient of « due to and toward the Sun is quite small compared to the Sun’s
gravitational field gq:

2|V inal

1gsl
This should be compared with the best constraints on the time variation of «,
which, in units of the Hubble expansion rate, are substantially weaker:

<4 x 10719,

HE <1075,
o
This suggests that, unless there are unusual sources for the scalar field which
controls the value of «, e.g. sources which are present in an average cosmological
context but which do not concentrate in ordinary matter or other special situations,
then today’s LLR constraint on the spatial gradient of « is the significant present
measure of the constancy of «.
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v = las¢d — ¢,

B = las¢ — ¢,

Figure 5.3. Typical cosmological dynamics of a background scalar field is shown if that
field’s coupling function V(¢) has an attracting point ¢,. The strength of the scalar
interaction’s coupling to matter, proportional to the derivative of the coupling function,
weakens as the attracting point is approached: so in a scalar—tensor metric theory, for
example, the Eddington parameters y and 8 both approach the pure tensor gravity values
of one.

5.3.2 Geodetic precession of the local inertial frame

Because the Earth and Moon travel at different velocities through the Sun’s
gravitational field, terms from lines D and F of equation (5.1) are present which
accelerate the Moon relative to Earth. A particularly interesting part of the relative
acceleration is proportional to both V and u and the Sun’s acceleration with, as
shown in figure 5.2, V being the velocity of the Earth relative to the Sun, and u the
velocity of the Moon relative to Earth. These terms form deSitter’s Coriollis-like

acceleration
Say = 2R4s X u (5.12)
with
2y + 1 GM;,
Qis = TCZR3R xV (5.13)

and its geometrical interpretation is the local precession of the inertial frame at
rate 4s which amounts to about 19.2 mas yr~—!. The effect of this perturbing
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acceleration on the orbit is primarily an additional rate of perigee precession
with respect to distant inertial space. This is measured by comparing the Moon’s
anomalistic frequency A (rate of eccentric motion) with its synodic frequency D
(rate of monthly phase) and with the latter converted into lunar sidereal frequency
 (orbital rate) by adding to D the annual rate 2 which is provided by results from
other solar system experiments. Sidereal minus anomalistic frequency of lunar
motion includes deSitter’s precessional rate as a supplement to the Newtonian
tidal contributions to perigee precession. These lunar frequencies are measured
from range signal perturbations whose size grows linearly in time. The Moon’s
range from Earth includes several dominant oscillatory contributions:

SrME = Lece C0S(A) + Lyarcos(2D) + Leyccos(2D — A) + - --

with Lecc being the amplitude of eccentric motion, Ly, the amplitude of solar
tidal perturbation called the variation and Ly being the amplitude of the hybrid
evection perturbation due to both the solar tidal force and the eccentric motion of
the Moon. The least-squares fit of the LLR data, which yields the best estimates
for the two key lunar frequencies, will then involve the parameter ‘partials’:

06rME ) .
W = — t(Lece SIN(A) — Leye Sin(2D — A))
35

;gE = — 21(Lyar SIN(2D) + Leve sin2D — A))

The precision of the measurement of the deSitter precession grows particularly
with the total time of the LLR experiment, not only because of the growing
quantity and quality of the accumulated range measurements but also because of
the linear growth in signal sensitivity. The most recent fit of the LLR data confirms
the presence of the geodetic precession with precision of 0.07 mas yr~! [10].

5.3.3 Time evolution of gravity’s coupling strength G

The evolution of Newton’s coupling parameter G over time results in proportional
evolutions for both the radial size and frequencies of the lunar motion. Slightly
different orbital changes occur when a torque (indicated by L) acts on the orbit:

G L
L Yot
G L
@ _,G 3L
[ G L

During the earlier years of the LLR experiment, the mean orbital radius signal

L G
Sr(t)mE = (2Z —~ 5) r(t — to)
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was used to measure G. However, this involved estimating and subtracting a
contribution to 7 which results from the orbital torque exerted on the Moon by
the ocean tidal bulges on Earth which, because of friction, lag in angle from
the direction toward the Moon. The inclination and 18.6 yr precession of the
lunar orbit’s plane result in a modulation of the tidal contribution to 7 which
helps to separate the two perturbations after sufficient years of data have been
accumulated. But the data set produced by LLR has, in recent years, become
sufficiently extended in time so that the range signals associated with frequency
shifts, which grow quadratically in time, are becoming dominant in the fit for G.
Recall that the two lunar phases can be expanded in terms of the initial phase, rate
and acceleration:

Dt)=D+ D@t —1,) + 3Dt —1,)* +--- (5.14)
A() = A+ At — 1) + YA@ — 1) +---. (5.15)

The synodic frequency is, by definition, equal to the difference in the lunar
sidereal rate and the solar sidereal rate around the Earth,

D=w-Q

while the Moon’s anomalistic rate is derivable from the underlying equation of
motion and can be expressed in the form

. GM
A:C!)—————— ..... (J/+1/2)2—Q+
c“R

which consists of the classical Newtonian expression plus relativistic
modifications, with the dominant geodetic precession contribution shown. From
these two expressions, the solar sidereal rate and its acceleration can then be
expressed as follows
.. 3(A-D)?
Q=A-D+-——->7—""—+---
4 A

Q=A-D+---.

While the lunar phases A and D suffer accelerations due to any tidal torques
acting between Earth and Moon, the solar rate €2 is not affected by the tidal
torques. Acceleration of this solar rate is, therefore, a rather pure measure of
a time variation in G. Noting from equations (5.14) and (5.15) that the partials
for A and D will grow in amplitude quadratic in time

IR 1
e 12(Loce c0S(A) — Leye cOs(2D — A)) (5.16)
dA 2

aRcalc 2
Y = t“(Lyar cos(2D) + Leyc cos(2D — A)) (5.17)
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it follows that the formal error in measuring G decreases as the inverse square
of the time span 7 of LLR observations. For a uniform time distribution of
observations, one obtains with

G 1Q

G 2Q

(5(’;) _[360 1 o
G RMS a N QT? 4L%ar—i_?’L2

eve

with o being the rms size of individual range measurement errors and N the total
number of measurements spread over the time 7'. A recent fit of almost 30 yr of
LLR data yields the following excellent measurement constraint [10]:

G
e = 0+1.1) x 1072y !, (5.18)

This amounts to about 1/60 of the observed Hubble expansion rate of the universe.
With the precision of this measurement now growing quadratically in time, LLR
should continue indefinitely to be at the cutting edge in the measuring of G.

5.4 An additional Yukawa interaction?

When the supplementary interaction given by equation (5.7) is of a Yukawa
nature, u # 0, it contributes to the precession of the periastron for a near-circular
orbit of radius r by an amount

5((1)—(,()0) . 1 Kl'Kj

— 2 [—
o = G, W e

with w and w, being the orbit’s sidereal and eccentric frequencies, respectively.
This perturbation of the precession rate also occurs if the Yukawa force is metric,
K; ~ M;, or non-metric. With the Moon’s perigee precession rate measured to a
precision of 0.07 mas yr~! and showing no anomaly, then for Yukawa ranges in
the vicinity of that for the maximum sensitivity of lunar perturbation, ur = 2, the
strength of the Yukawa force is decisively constrained

1KeKml <5x 10712
GMgMy

exp(ur — 2)) .

(ur)?

5.5 Gravitomagnetism
Line C of the complete N-body gravitational equation of motion given by

equation (5.1) indicates a post-Newtonian gravitational force proportional to the
velocities of both bodies in the interaction and, in analogy with electromagnetic
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theory, it has been called the gravitomagnetic interaction. From line C of
equation (5.1), this acceleration is

da; = (2+2y) Z %(I‘Uv,’ SV —Fij - ViV;).
j#E T
It often has been claimed that the presence of gravitomagnetism within the total
gravitational interaction has not been experimentally confirmed and measured.
Indeed, different experiments have been developed explicitly to observe the
effects of this historically interesting prediction of general relativity. But this
gravitomagnetic acceleration already plays a large role in producing the final
shape of the lunar orbit, albeit in conjunction with the rest of the total equation
of motion: the precision fit of the LLR data indicates that gravitomagnetism’s
presence and specific strength in the equation of motion can hardly be in doubt.
Because both the Earth and Moon are moving in the solar system barycentric
frame—the frame in which the dynamical equations are formulated and then
integrated into orbits—a gravitomagnetic interaction exists between these two
bodies, the Earth having velocity V (¢) and the Moon’s being V (¢) + u(t), as seen
in figure 5.2. As a result of these mutual motions, perturbations to the Earth—
Moon range from the gravitomagnetic acceleration are proportional to both V?2

and Vu:
_ Gme 4 v? 2 Vu
87’([) = r2 _ﬁ? COS(2D) + EC—ZF(Q/(U) COS(D)
= —530co0s(2D) + 525 cos(D) cm. (5.19)

As previously discussed, the amplitudes of the lunar motion at both these
periods (monthly and semi-monthly) are determined to better than half a
centimetre precision in the total orbital fit to the LLR data. It would be
impossible to understand this fit of the LLR data without the participation of the
gravitomagnetic interaction in the underlying model and with a strength very close
to that provided by general relativity, y = 1. As in electromagnetic theory, the
velocity-dependent force terms in lines C and D of equation (5.1) can be changed
individually by formulating the dynamics in different frames of reference but the
very ability to reformulate the equations of motion in different frames without
introducing new frame-dependent terms depends on the local Lorentz invariance
(LLD) of gravity. It is the entire package of velocity-dependent, post-Newtonian
terms which includes the gravitomagnetic terms, lines C plus D of equation (5.1)
that produces the LLI: the Eddington parameter y represents the only freedom
in the structure of this LLI package. Our confidence in the exhibited structure
of this total collection of velocity-dependent terms is established in proportion to
the precision with which the various preferred frame, LLI-violating effects in the
solar system proportional to W2, WV and Wu have been found to be absent [5].
LLR has been one of the main contributors in establishing gravity’s LLI through
null measurements of several W-dependent effects [4,6,7, 18].
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5.6 Inductive inertial forces

Inductive forces are shown on line E of equation (5.1): in such forces, the
acceleration of one mass element induces an acceleration of another proximite
mass element (e.g. i and j in figure 5.2). From line E of equation (5.1), we have

Gm; A A
Sa; =) 262ij ((4y +3)a; +aj - Fijfij). (5.20)
j#i

These accelerations play a key part in altering the inertial masses of the Earth and
Moon because of their internal gravitational binding energies: either the absence
or an anomalous strength of these inductive forces would translate directly into
differences between the acceleration rates of these whole bodies toward the Sun.
A polarization of the Moon’s orbit in the solar direction, as previously discussed,
would result. The forces, equation (5.20), acting between the mass elements of
Earth, for example, by themselves would lead to an anomalous polarization of the
lunar orbit of very large magnitude:

Sr(t) = 130cos(D) m. (5.21)

Only when these inductive forces are combined with the other post-Newtonian
inertial forces shown on line F of equation (5.1) does the total inertial self-force
of a body become

1 /1 , G mim;
b= = (s i - ST )
l

rij
i iJ
- m;v;v; — — E —=Fijrij|-a.
ol 24— p3 Y
i i, i

The first line of this total self-force is now the expected inertial force due to the
internal kinetic energy and gravitational binding energy within the body. The
second line represents contributions to the body’s internal virial which, when
totalled over all internal force fields, vanishes for a body in internal equilibrium
and experiencing negligible external tidal-like forces. These self-forces of a body
are an integral part of the determination of the total gravitational to inertial mass
ratio of bodies discussed previously, and in general relativity, they are cancelled
by the equal contributions of internal energies to a body’s gravitational mass.
They were explicitly discussed here in order to show the large size of such
inductive force contributions which must necessarily be taken into account in the
fit of theory to the LLR data.
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6.1 Introduction

In the past few years, cosmology has experienced enormous progress. Our
understanding of the physics of the early Universe, its evolution and current large-
scale structure, now lies on firmer grounds than in the past. This was due, on
one side, to breakthroughs in theoretical research and, on the other side, to the
impressive advancements made in observational techniques, which has allowed a
large quantity of high-quality data to be collected. A fundamental role in entering
what has been dubbed ‘the era of precision cosmology’ has been played by the
study of the cosmic microwave background (CMB). In the first part of this chapter,
I briefly outline the basics of the standard cosmological model and some key
elements of the early Universe. Next, I give a pedagogical exposition of the
physics of CMB anisotropy, showing its importance as a cosmological probe.
Finally, I highlight the progress made in CMB investigation in the last decade,
from the results of the COBE satellite, that opened a new era in the investigation
of the cosmos to the recent WMAP results, ending up with some future prospects
from the forthcoming Planck mission.

6.2 The standard cosmological model

Cosmology has a standard model, which provides a well-established framework
in which to understand the global properties of the physical Universe. There is
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116 The early Universe and the cosmic microwave background

a strong interplay between fundamental physics and cosmology, since the early
Universe is a natural laboratory for high-energy physics. What follows gives a
very sketchy picture of the main elements of the standard cosmological model. 1
refer the interested reader to general books on the subject, such as those by Kolb
and Turner [19] and Peebles [30], for a thorough exposition.

6.2.1 The big bang model

The big bang model (or, more precisely, the Friedmann—Robertson—Walker
(FRW) model) provides a very successful description of the physical Universe
from very early times (f ~ 1072 s) to the present. It can easily explain some key
features of the observed Universe, such as

the expansion law,

the abundance of light elements,

the existence of the cosmic microwave background (CMB) and
the age of the oldest objects observed.

Furthermore, it provides a framework where the gravitational instability scenario
that explains the growth of cosmic structures can be easily accommodated.

The Universe appears to be homogeneous and isotropic on scales comparable
to its present observable volume. The geometry of such a Universe is described
by the Robertson—Walker metric':

dr?
1 — kr?

ds? = gy, dxt dx¥ = di> — R2(1) [ + r2(d6? + sin’ 0 d¢2)] (6.1)

where k is a parameter assuming the values 1, 0, —1 for positive, null or negative
space curvature, respectively. The scale factor R(¢) describes the expansion of
the Universe. This is often parametrized in terms of a scale factor normalized to
unity at present: a(f) = R(t)/Ro. The time coordinate ¢ is the proper time. The
coordinates r, 6, ¢ are called comoving: they label the position of observers at
rest in the expanding frame.

The proper distance in the Robertson—Walker metric is defined as

r dr/

d = R(t) S
0 1 — kr'?

6.2)

The quantity H = R/R = a/a is the Hubble parameter describing the expansion
rate of the Universe. The Hubble time, t = H™!, gives the characteristic time
scale of the expansion. In ¢ = 1 units, H —1 also identifies a characteristic length
scale, the Hubble radius, giving the approximate size of the visible Universe.
The present value of the Hubble parameter, Hy, is called the Hubble constant.
This is usually parameterized in terms of the adimensional quantity & as Hy =

' Units are chosen so that ¢ = 1.

Copyright © 2005 IOP Publishing Ltd.



The standard cosmological model 117

100 7 km s~! Mpc~!. The Hubble expansion law is obtained by deriving the
proper distance with respect to time:

. R r dr’
v=d=—R _— (6.3)
R Jo 1 — kr'?
that is
v=Hd. (6.4)

The dynamics of the Universe, i.e. the time evolution of the scale factor,
is governed by the Friedmann equation, which can be derived by the Einstein
equation using as the stress-energy tensor that of an ideal fluid with time-
dependent energy density p(¢) and pressure p(z):

R2+k_87tG 65)
R) "RET 3 " '

Imposing stress—energy tensor conservation results in the equation:
d[R*(p + p)] = R*dp. (6.6)

Assuming a generic equation of state p = wp with w independent of time, the
latter gives
p ox R73U+w), 6.7)

For example, for radiation p = p/3 and p o R™*; for matter p = 0 and

p o« R™3; and for a cosmological constant (vacuum energy) p = —p and p

constant. The evolution of the scale factor when the Universe is dominated by one

of these components is found by solving the Friedmann equation: R o< r'/2 for

a radiation-dominated Universe, R o /3 for a matter-dominated Universe and

R o exp(Ht) (with H = constant) for a vacuum-energy-dominated Universe.
Deriving the Friedmann equation with respect to time, one gets

R Adn G
— =0 +3p). (6.8)

R
The Universe is expanding at present, so that R > 0 today. If, in the past, the
right-hand side was always negative (or p + 3p > 0), then there must have been
some finite time when R = 0. This time is usually set as + = 0 and is called the
big bang.

The causal horizon (or particle horizon), ry(t), is the distance covered at
time ¢ by a light signal emitted at time + = 0: all the points which, at time ¢,
are further away than rg(f) have not had enough time to get in causal contact.
The horizon length is calculated by imposing ds = 0 (light-like interval) in the
Robertson-Walker metric:

/f dr’ _/’H dr ©9)
o R&)  Jo V1—kr? '
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118 The early Universe and the cosmic microwave background

so that the proper length of the horizon is

dr’
R’

t
du(t) = R(t)/ (6.10)
0
The photon wavelength is affected as any other length by the expansion of
the Universe. The relative variation of the observed wavelength X, with respect
to the emitted wavelength ). due to the expansion is the redshift z:

Ao — Ae
= . 6.11
z " (6.11)
The redshift is related to the scale factor by
g o] (6.12)
TR '
By defining the critical density
= 3H (6.13)
Pe= 8nG '
and the density parameter
o=~ (6.14)
Pc
the Friedmann equation can be rewritten as
k=H*R*(Q - 1) (6.15)

relating the space curvature to the quantity of matter in the Universe. Note that
this equation applies at any time and that 2 and p. vary as the Universe expands.

6.2.2 Inflation

Despite its success, the big bang model has a number of shortcomings. Rather
than being real inconsistencies of the theory, these problems are essentially related
to questions about the initial state of the Universe that cannot be answered by the
FRW model itself.

The first problem of the big bang model is usually referred to as the horizon
problem. One manifestation of this problem is given by the fact that we receive the
thermal background radiation left over from the very early, very hot stages of the
Universe with nearly the same temperature from any point of the sky. However,
regions of the sky separated by angles larger than about 1° were outside the causal
horizon when those photons were emitted, preventing any physical process from
creating the observed uniformity. A closely related problem arises when trying to
explain the existence of density perturbations on scales larger than the horizon at
early times. Primeval inhomogeneities on scales of cosmological interest cannot
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have been produced by causal, microphysical processes taking place in the early
Universe.

Another problem of the big bang model is known as the flatness problem. If
we use equation (6.15) to trace back in time the evolution of the density parameter
2, we find that, as R — 0, 2 has to be closer and closer to 1. More quantitatively,
it turns out that in order to have 2 of order unity today, it had to be fixed with
enormous precision at early times. For example, 2(1s) =1+ (’)(10_16). Were
2 not set this close to unity, the Universe would either have quickly recollapsed
or it would have expanded so rapidly as to reach a temperature of 3K in a tiny
fraction of a second. Equation (6.15) can also be used to relate the radius of
curvature of the Universe, defined as Reyry = R(t)|k|’1/ 2. to the Hubble radius
H™ ' H /R = | — 1|7V/2. So the flatness problem can be restated by
saying that the radius of curvature of the Universe had to be much bigger than the
Hubble radius at early times: Reyrv(1 8) 2 108H 1.

Finally, fundamental physics theories predict the presence of a variety of
stable, massive particles, with very small annihilation cross sections, created in
the very early Universe. There is no way in the standard big bang model of
preventing these unwanted relics from becoming the dominant component in the
present Universe and contributing to the total energy density in such a way that
Q> 1

Starting from the pioneering work done by Starobinsky [43] and by Guth
[14], it became clear that a class of models, grouped under the generic term
inflation, can provide a mechanism for solving the problems of the big bang
model. The basic idea behind inflation is that, at some very early time, the
comoving Hubble radius decreased in time:

d(H™'/R)/dt < 0. (6.16)

This is the opposite of what happens in the standard big bang model. It is easy
to check that this condition is satisfied as long as R > 0, which means that the
Universe had to undergo a phase of accelerated expansion.

Condition (6.16) immediately solves the flatness problem, as can be seen by
plugging it into equation (6.15): now, as the Universe inflates, €2 is pushed closer
and closer to 1, no matter what the initial value is. Stated differently, during
inflation the radius of curvature grew much bigger than the Hubble radius, so that
the observable portion of the Universe appears to be flat. Inflation also easily
solves the horizon problem. During inflation, small, causally connected regions
of the Universe rapidly grew much faster than the causal horizon. Regions of the
Universe that appear to be causally disconnected at late times were actually in
causal contact before inflation began. The accelerated expansion of the Universe
during inflation also diluted any unwanted relic, whose density rapidly became
negligible with respect to the total energy density.

Inflation is not an alternative to the big bang model. It is an additional
ingredient, a mechanism added to the model at very early times to explain its
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evolution at later times. Actually, the inflationary phase lasts for a very short
time, after which the Universe evolves according to the standard big bang model.

There is no universally accepted and tested model for inflation. There are a
number of viable candidates, all of which are based in one way or another on the
dynamics of a weakly coupled, homogeneous scalar field ¢ [1,21]. In its simplest
form, the equation of motion of such a field is

$+3Hp+V'($) =0 (6.17)
and its energy density and pressure are given by

Py = 59> + V(9) (6.18)
Po = 39> — V() (6.19)

The expansion of the Universe contributes a friction term in the equation of
motion through H. The exact shape of the potential V depends on the specific
model of inflation. Note from equation (6.8) that the condition for inflation R>0
requires that py + 3py < 0. This is satisfied as long as P < V(g), ie. if
the field potential energy overcomes its kinetic energy. This implies that, during
inflation, the field must be moving very slowly down the potential hill. In fact, a
common solution to the field equation of motion is based on the so-called slow-
roll approximation, which assumes that the field acceleration ¢ is negligible, so
that

3H$ ~ —V'(¢). (6.20)

The conditions for the slow-roll assumption to hold are given by

<1 (6.21)

1 "\? 1|V
= — 1 = |
€= 16nG (v) < =56 ‘ %

where € and 75 are called the slow-roll parameters. Clearly, given an arbitrary
V, the existence of a slow-roll regime ensures that inflation can take place. The
potential remains roughly constant during slow roll and ¢2 < V, so that the
Friedmann equation is simply:

H2~87TG
3

V(g) (6.22)
since, as R grows, the term k/R? rapidly decays and can be neglected. This
Friedmann equation has an exponential solution for R. The logarithmic amount
of expansion between time #; and 5, called the number of e-foldings N, is then
given by

R(t2) /’2 /"’2 V(o)
N=1 — | @H=-87zG| d . 6.23
! <R(t1)) L, ) Yyig 0P
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About 70 e-foldings (i.e. an expansion by a factor ~ 103) are enough to solve the
problems of the big bang model: in realistic models of inflation, this is obtained in
about 1073 s. Inflation comes to an end when the field reaches the minimum of
the potential and it starts rapid, damped oscillations, dissipating its energy through
particle creation (a process called reheating). From now on, the evolution of the
Universe can be described by the standard big bang model.

One important feature of inflation is that it provides a mechanism for
generating super-horizon primordial density perturbations in the early Universe.
Broadly speaking, the mechanism goes as follows: consider a generic quantum
fluctuation 3¢ (x, t) in the scalar field ¢. The Fourier expansion coefficients
of this fluctuation are §¢¢. During inflation, the wavelength of each Fourier
component will rapidly grow much bigger than the causal horizon. When this
happens, the corresponding fluctuation will ‘freeze’, since no causal mechanism
will be able to influence its evolution. At later times, long after inflation ends,
each wavelength will re-enter the horizon and the associated component of the
fluctuation will be seen as a density perturbation. Note that there is no way of
producing such a mechanism in classical cosmology: in the standard big bang
model, a certain comoving scale becomes smaller than the causal horizon at some
given time and remains inside the horizon ever after. In a similar way, inflation
also produces a stochastic background of gravitational waves. Gravitational
waves correspond to tensor perturbations in the spacetime metric, while density
perturbations are scalar. Density perturbations produced during inflation are
adiabatic or isentropic: they are genuine curvature perturbations in the spacetime
metric and leave the ratio of matter and radiation (or of any other two species)
constant at any point in space. Furthermore, they are Gaussian distributed (or
very close to Gaussian). The power spectrum of density perturbations produced
by inflation in the slow-roll approximation is quite simple:

Py(k) = Agk™ Pi(k) = Ak™ (6.24)
for scalar and tensor density perturbations respectively, with
ng=1—4e+2n ny = 2e. (6.25)

Of course, since in the slow-roll regime n and € must both be very small,
inflationary models usually predict a scalar spectral index very close to 1, a
property termed scale invariance. Similarly, the power spectrum of tensor
perturbations should be roughly constant, since n; >~ 0. The ratio of the amplitude
of tensor and scalar perturbations must satisfy the so-called consistency relation
r = Ai/As = 13.6€. Measuring the power spectrum of density perturbations is
then a powerful tool for testing the inflationary parameters.

Summing up, the inflation mechanism proved quite powerful as a refinement
of the standard big bang model and is now considered as an important ingredient
of the standard cosmological model. Independently of the details of the specific
model, the inflationary scenario makes a number of testable predictions:

Copyright © 2005 IOP Publishing Ltd.



122 The early Universe and the cosmic microwave background

the Universe must be very close to flat;
primordial density perturbations in the Universe are Gaussian distributed,
adiabatic and have a power-law power spectrum; and

e a stochastic background of gravitational waves should be present in the
Universe.

Furthermore, constraining the slow-roll parameters by measuring the exact shape
of the power spectrum of primordial perturbations can rule out specific models of
inflation.

6.2.3 The cosmic budget

The evolution of the Universe in the big bang model is essentially determined by
its content. The total density parameter in a multi-component Universe is the sum
of the density parameters of the single components:

a=Ya. (6.26)

Assuming that each component has an equation of state of the sort p = wp, with
w independent of time, the Friedmann equation can be written as

<\ 2
(E) - H()Z[Zﬂia_3(l+w")+(l —Q)a_2j| (6.27)

a

where the density parameters are evaluated at present time. One of the main
tasks of observational cosmology is to obtain accurate estimates of the parameters
in the right-hand side of the Friedmann equation: the Hubble constant and the
contributions to 2 from the various components in the Universe. Let us analyse
each of these components in turn.

6.2.3.1 Radiation

The radiation component of the Universe (relativistic particles) has equation of
state pr = pr/3. When the Universe is radiation dominated, the scale factor
evolves as a o t!/2. According to the standard cosmological model, today the
radiation in the Universe is made of the cosmic microwave background photons
and three species of relic massless neutrinos. The present radiation density can be
expressed in terms of the photon temperature 7', as

T T 6.28
PR = 258 (6.28)
where g, counts the total number of effectively massless degrees of freedom. This
can be computed, giving g, = 3.36, while the cosmic microwave background
average temperature is accurately measured to be 7 = 2.725 £ 0.001 K. Thus,
today the radiation gives a totally negligible contribution to the critical density:
Qr =431 x 107172,
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6.2.3.2 Matter

The equation of state of matter or non-relativistic particles is pp = 0, so that,
during matter domination, the scale factor evolves as a t2/3. The most familiar
contribution to matter in the Universe comes from baryons (or nucleons). The
abundance of light elements produced in the early Universe is strongly dependent
on the baryon-to-photon ratio, which is directly related to the present baryon
density. Measurement of primordial abundances of D, 3He, “He, "Li are a strong
probe of the baryon density and indicate that baryons contribute to roughly 5%
of the critical density. If Q2 ~ 1, as predicted by inflation and now accurately
confirmed by cosmological observations, most of the Universe is not made of the
same stuff of which we are made!

There is strong observational evidence that a large contribution (about 30%)
to the critical density comes from so-called dark matter. Theoretically, the most
plausible candidate for dark matter is some heavy, weakly-interacting massive
particle, left from the very early stages of the evolution of the Universe. The
standard picture for the production of such a relic is as follows. The candidate
particle is assumed to be initially in thermal equilibrium with the primordial
plasma, so that its abundance decreases as exp (—Mx/T) where Mx is the
particle mass and T is the photon temperature. When the interaction rate of
the particle, I', becomes smaller than the expansion rate of the Universe, H,
the particle decouples from the thermal plasma and its abundance becomes
constant (a moment known as freeze-out). Then, a cosmologically relevant relic
abundance can be achieved provided the particle has a large enough mass and a
small enough interaction rate. There are many candidates for dark matter (for
example, supersymmetric partners): unfortunately, since it interacts so weakly,
direct detection of dark matter proves challenging. Some light on the nature
of dark matter can be shed by accurate measurements of its present density by
cosmological observations.

6.2.3.3 Dark energy

In its most general form, Einstein equation includes a so-called cosmological term
A in addition to the familiar stress—energy tensor:

Ruy — 38uwR =87 G Ty + Agp. (6.29)

Adding a cosmological constant term is completely equivalent to introducing a
new contribution to the stress-energy tensor from a component with

ov=A/87G  py=—A/87G. (6.30)

It can be shown that this is exactly the kind of contribution resulting from zero-
point fluctuations of quantum fields or vacuum energy. The equation of state of
vacuum energy is py = —py and the Universe expands exponentially when it is
vacuum dominated: a o exp [(A/3)1/2t].
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The introduction of this seemingly harmless contribution to the energy
density of the Universe has unfortunately disturbing implications. First of all,
any estimate of plausible values for the vacuum energy density from fundamental
physics exceeds the critical density p. by at least 40 orders of magnitude, while
observational cosmology sets the total energy density of the Universe at roughly
the critical value, & ~ 1. One might hope that some mechanism is leading
to an exact cancellation of the contributions to the vacuum energy, so that it is
exactly py = 0: however, such a mechanism is currently unknown. The situation
is even more puzzling, since recent observations of distant type Ia supernovae
[33,37] have shown that we live in a Universe that has just entered a vacuum-
dominated epoch, starting a phase of accelerated expansion. This means that the
cosmological constant term is still very small compared to theoretical estimates
but it is large enough (pv/pc. ~ 0.7) to be cosmologically relevant in the present
Universe. There seems to be a serious fine-tuning problem: if A is non-zero,
then why is it so small? Furthermore, given the observed value of A, the vacuum
energy was never important in the past evolution of the Universe but it is starting
to be the dominant contribution at present time: we then seem to live in a very
special moment in the Universe, an annoying coincidence indeed!

The vacuum-energy problem may, in fact, be the biggest mystery of modern
physics [38]. A possible way to alleviate it, and one that has interesting
and testable implications for cosmology, is to consider a generalization of the
cosmological constant term, that has been termed dark energy. As shown
when discussing inflation, a scalar field ¢ with effective potential V (¢) has an
equation of state with w = (¢2/2 — V)/($%/2 + V). Any value of w such that
1+ 3w < O results in an accelerated expansion, so it is dynamically equivalent to
a cosmological constant. The interesting feature of these models is that they admit
tracking solutions, in which the dark energy can reach the present value starting
from a very different set of initial conditions. This mitigates the fine tuning and
coincidence problems but, of course, leaves open the questions about the nature
of the field ¢. Cosmological constraints to w can be able to discriminate among
dark energy models by saying something about the scalar field potential V. An
excellent review on dark energy from the point of view of both cosmology and
fundamental physics is [27].

6.3 The cosmic microwave background

The cosmic microwave background (CMB) is one of the primary tools for
investigating the physics of the early Universe and constraining the parameters
of the standard cosmological model. It provides a picture of the Universe when
it was only a few hundred thousand years old and its physics can be described by
simple thermodynamics and linear perturbation theory.
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6.3.1 The primordial plasma and the CMB

The CMB was serendipitously discovered in 1964 by radio astronomers Arno
Penzias and Robert Wilson, as an excess noise in the radio antenna they were
testing at the Bell Labs in Homdel, New Jersey [32]. The CMB intensity
observed by Penzias and Wilson was highly isotropic (i.e. it was independent
of the direction of observation in the sky) and resulted in being consistent with
the emission expected from a black body at a temperature of about 3 K.

The existence of a thermal background radiation has a natural explanation in
the standard hot big bang model [9]. According to this model, the temperature
in the early Universe is so high that neutral atoms cannot exist. Frequent
Thomson scattering in the primordial plasma maintains photons and free electrons
in thermodynamical equilibrium. Such a system is characterized by a black body
energy spectrum and is completely described by thermodynamical quantities, like
the black body temperature 7. The plasma optical depth (i.e. the mean number of
collisions experienced by a photon from a certain time to the present) is given by

n

() = — / dn’ corne(n')a (6.31)
10

where 7 is the present conformal time (with dn = cdt/a), ot is the Thomson
cross section and rn. is the number density of free electrons. The mean free path
of photons, ! = 1/oTnea, is very close to zero in the primordial plasma. The
fraction of free electrons X, at any given time is approximately governed by the
Saha equilibrium equation:

Xz (2mekT)3/Ze,B kT

€ =
1—Xe nyg

(6.32)

where B = 13.6 eV is the binding energy of hydrogen. The formation of neutral
hydrogen atom, a process known as recombination, can take place as the Universe
cools down at about 7, ~ 3000 K: when this happens, X, rapidly drops to zero
and photons can travel essentially unimpeded. The transition from ¢! ~ 0 to
=1 — o0 is quite rapid and happens at a, ~ 1073 or 1, ~ 10° yr after the
big bang. The CMB is made of the photons we receive from this epoch, cooled
down by the Universe expansion so that Ty = T,a, ~ 3 K. Its black body energy
spectrum is a result of the matter—radiation thermodynamical equilibrium existing
at early times.

6.3.2 The anisotropy of the CMB

The standard picture for understanding structure formation in the Universe is
based on gravitational instability: the observed large-scale structure formed by
gravitational amplification of small density perturbations generated in the early
Universe. In such a scenario, the presence of anisotropies in the temperature
distribution of the CMB is unavoidable, as density fluctuations leave an imprint
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in the CMB at the time of photon—matter decoupling. The first calculations
of the expected anisotropy of the CMB were done by Sachs and Wolfe [39],
who predicted the level of anisotropy induced by fluctuations in the gravitational
potential and by Silk [41], who computed the amplitude of density fluctuations at
recombination needed to produce galaxies. It was immediately clear that, despite
the high level of isotropy observed by Penzias and Wilson, fluctuations in the
CMB temperature had to exist in order to explain the level of inhomogeneity
observed in the present Universe.

The largest anisotropy observed in the CMB is not intrinsic but originates
from the fact that our reference frame (the Solar System) moves at speed vg
relatively to the CMB photons. This gives rise to a dipole anisotropy due to the
Doppler effect:

AT/T = (ve/c) cos(0) (6.33)

where 6 is the angle between the direction of motion and the line of sight?.

Intrinsic CMB fluctuations generated at or before recombination are called
primary anisotropies. The main contributions to primary anisotropies are as
follows.

e Intrinsic fluctuations: AT /T « 8§, where § is the matter density perturbation
at recombination: if the perturbations leave unchanged the entropy of the
radiation per baryon (adiabatic fluctuations), then AT /T = 1/46, = 1/36.

e  Velocity-induced fluctuations: AT/T o wv/c, where v is the peculiar
velocity of the matter at decoupling: photons get extra energy when scattered
by matter in motion.

e  Gravitational potential fluctuations: AT/T o 8¢/c?, where 8¢ is the
fluctuation in the gravitational potential at decoupling: photons leaving the
perturbed region have to ‘climb’ out of the potential well, experiencing
gravitational redshift (Sachs—Wolfe effect [39]).

Interactions experienced by the background photons between recombination
and the present may give rise to sub-dominant effects, the so-called secondary
anisotropies. Possible sources of secondary anisotropies include gravitational
lensing [6], reionization of the intergalactic medium, inverse Compton scattering
by free electrons in hot intracluster gas (thermal Sunyaev—Zel’dovich effect [44]),
variation of the gravitational potential after decoupling (integrated Sachs—Wolfe
effect [39]), passage through nonlinear structures (Rees—Sciama effect [36]), etc.

6.3.3 The statistics of the CMB

In inflationary models, primordial density perturbations follow a Gaussian
statistics: the probability of having a density contrast §(x) = §p(x)/p, at some
point of space x and at some initial time 7 is proportional to exp(—82/0%). Small

2 Incidentally, from the observed dipole amplitude, which is ~ 3 mK [4], we measure vp ~
600 km s~
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deviations from Gaussianity are predicted in non-standard inflationary models
and in non-inflationary scenarios: however, the observed upper limits to these
deviations are very small and, therefore, I will restrict the discussion to the case
of Gaussian density perturbations.

The evolution of density perturbations is more easily understood by
expanding the density contrast in plane waves:

S(x,t) =

3 T
(271)3_/\/d k 8k (t) exp (—ik - x) (6.34)

where V = L3 is the fundamental volume and periodic boundary conditions have
been imposed. Every component of the expansion, & (¢), describes the evolution
of a perturbation of given characteristic scale A = 27 /k. Note that the Fourier
components of the density field only depend on the module of the wavenumber,
k, because of the isotropy of the Universe. An appealing consequence of working
in Fourier space is that Gaussian initial conditions imply that each coefficient §;
is a Gaussian random variable with zero average, (6x) = 0, and random phases,
i.e. the modes corresponding to different wave numbers are uncorrelated:

8y =0 ifk #£K (6.35)

and their evolution can be followed independently. The symbol {-) denotes
the average on the statistical ensemble, i.e. on every possible realization of
the statistical field. The statistical properties of Gaussian random density
perturbations are completely described by the power spectrum P (k) = (|8(k)|?).
A power-law power spectrum, P (k) = Ak", as predicted by inflation, is usually
assumed.

The evolution of perturbations in linear regime leaves their statistical
properties unchanged. So the temperature fluctuation of the CMB on the sky,
8T/T, is a two-dimensional random Gaussian field: such a field is completely
described in terms of the two-point correlation function:

c _<8T ~.oT A)> 6.36)
(a) = ?(7/1)7(7/2 (6.

where « is the angle between the directions of observation y; and y;.
The anisotropy as a function of the direction 